

Complex abdominal aortic aneurysms: a review of radiological and clinical assessment, endovascular interventions, and current evidence of management outcomes

Girija Agarwal , MBBS*,¹ and Mohamad Hamady, MBChB^{1,2}

¹Department of Interventional Radiology, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom

²Department of Surgery and Cancer, Imperial College London, London, United Kingdom

*Corresponding author: Girija Agarwal, MBBS, Department of Interventional Radiology, Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London W2 1NY, United Kingdom (girija.agarwal@nhs.net)

Abstract

Endovascular aortic aneurysm repair (EVAR) is an established approach to treating abdominal aortic aneurysms, however, challenges arise when the aneurysm involves visceral branches with insufficient normal segment of the aorta to provide aneurysm seal without excluding those vessels. To overcome this, a range of technological developments and solutions have been proposed including fenestrated, branched, physician-modified stents, and chimney techniques. Understanding the currently available evidence for each option is essential to select the most suitable procedure for each patient. Overall, the evidence for fenestrated endovascular repair is the most comprehensive of these techniques and shows an early post-operative advantage over open surgical repair (OSR) but with a catch-up mortality in the mid-term period. In this review, we will describe these endovascular options, pre- and post-procedure radiological assessment and current evidence of outcomes.

Keywords: endovascular aneurysm repair; fenestrated stent; branched stent; chimney; physician modified stent; complex abdominal aortic aneurysm.

Introduction

Endovascular aortic aneurysm repair (EVAR) is an established approach to treat aortic aneurysms, being less invasive with lower perioperative mortality, comparable 5-year survival and is preferred by patients.^{1,2}

Challenges arise when the aneurysm involves visceral branches where there is not sufficient normal segment of the aorta to provide an aneurysm seal without excluding those vessels. It has been reported that approximately 30%-40% of infra-renal aneurysms have insufficient neck for a conventional graft or have certain anatomical features that make standard treatment suboptimal.³ To overcome the technical challenges, a range of technological developments and solutions have been proposed including fenestrated, branched, physician-modified stents, and chimney techniques with promising outcomes.⁴

Given this challenge of incorporating visceral branches, this review will focus on radiological assessment, device and patient selection and outcomes of endovascular repair for complex abdominal aortic aneurysms.

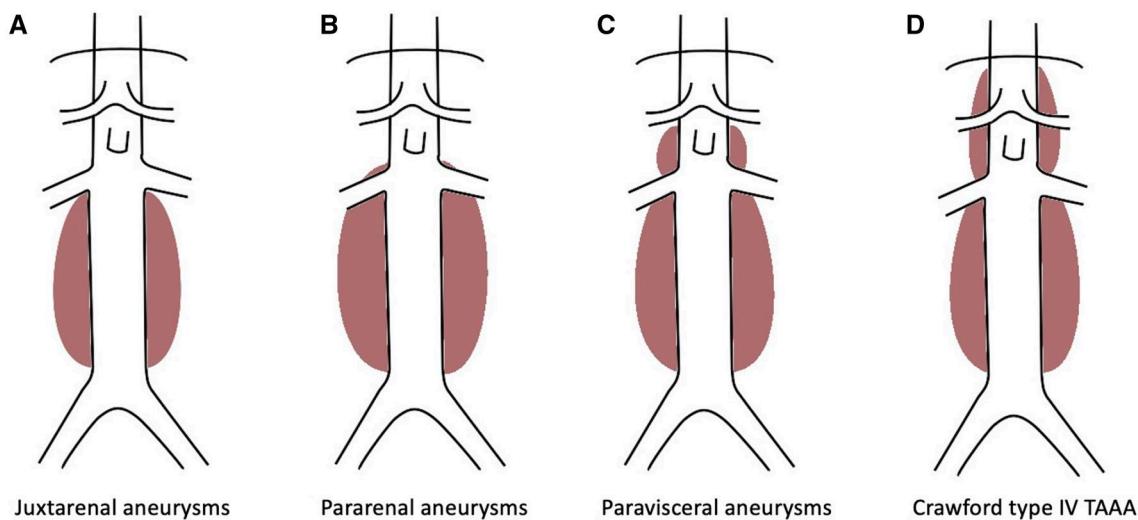
Definitions

Complex abdominal aortic aneurysms (Figure 1) include juxta-renal aneurysms (extends to but do not involve the renal arteries), pararenal aneurysms (aneurysm involves at least 1 renal artery and but does not involve the superior mesenteric artery (SMA)), paravisceral aneurysms (aneurysm involves

the SMA but does not involve the coeliac axis) and Crawford type IV thoracoabdominal aneurysms (TAAA).⁵

Indications for intervention

The European Society for Vascular Surgery (ESVS) recommendations for abdominal aorto-iliac artery aneurysms advise considering repair if the aneurysm diameter measures ≥ 5.5 cm for men and ≥ 5.0 cm for women, however, these guidelines are for infrarenal AAAs. Data is lacking for complex AAAs though ESVS recommends a similar threshold of 5.5 cm in men and 5 cm in women to consider intervention but this should be evaluated on a case-by-case basis as often these patients are higher surgical risk, meaning a higher diameter may be acceptable.⁶ The NICE guidelines for abdominal aortic aneurysms also advise that symptomatic aneurysms, or those growing at >1 cm/year should be considered for intervention.⁷ For type IV TAA, the ESVS guidelines recommend treatment if the aneurysm diameter measures ≥ 6 cm, is rapidly expanding (>1 cm/year), or if it is symptomatic; with the caveat that patients with connective tissue disorders may require intervention at lower aneurysm diameter thresholds.⁸


Pre-intervention assessment

Patient selection is essential to optimise outcomes as having multiple risk factors can make intervention too high risk, while certain comorbidities like peripheral arterial disease,

Received: 4 April 2024; Revised: 9 August 2024; Accepted: 18 August 2024

© The Author(s) 2024. Published by Oxford University Press on behalf of the British Institute of Radiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Diagrammatic representation of (A) juxtaparenal aneurysms (extends to but does not involve the renal arteries), (B) pararenal aneurysms (aneurysm involves at least 1 renal artery but does not involve the SMA), (C) paravisceral aneurysms (aneurysm involves the SMA but does not involve the coeliac axis), and (D) Crawford type IV thoracoabdominal aneurysms (TAAA). (Original artwork)

may indicate the patient is more suitable for an open repair.² The new 2024 EVS guidelines for aorto-iliac aneurysms recommend that for patients with a complex AAA and standard surgical risk, both open or endovascular repair should be considered and the decision should be based on fitness, anatomy, and patient preference. For patients with a complex AAA and high surgical risk, endovascular repair, specifically fenestrated or branched repair, should be considered first line.⁶

The EVS has comprehensive guidelines on preoperative evaluation of infrarenal AAAs though not so much for juxtaparenal aneurysms and variation still exists among different centres in the United Kingdom on the assessment and optimisation of patients.^{6,9} Nevertheless, it is logical that advice for infrarenal aneurysms can be extrapolated to include complex AAAs. Specific EVS guidance for juxtaparenal AAAs emphasises attempting to preserve renal function as these are closely approximated to the renal vessels and thus the patients at higher risk of renal dysfunction. Preoperatively this can be done through ensuring adequate hydration and holding nephrotoxic medication.⁶ General recommendations are that patients should undergo preoperative cardiac, pulmonary and renal function testing and the risk factors should be optimised.⁸ For example, this can be done by preoperative respiratory training programs for patients with reduced pulmonary function and appropriate medical therapy for blood pressure control. Risk factors can be a predictor of adverse outcomes. Increasing age and renal impairment have been linked to higher post-operative mortality in patients undergoing TAAA repairs, and this should be considered.¹⁰

Radiological assessment

Imaging is an integral part of preoperative planning. In terms of imaging technique, CT angiography with 1 mm slices allowing for 3D reconstructions is the standard. Imaging should be interpreted and manipulated using 3D reconstruction software to assess the anatomy, make exact measurements for the stent length and diameter as well as plan the C-arm position and angulation during the procedure. The key anatomical measurements are listed in Table 1.

Those measurements are used to assess anatomical suitability for endovascular intervention and to select the appropriate device. Although there is no adverse anatomical feature that represents an absolute contraindication, the increasing number of adverse anatomical features makes the case either substantially difficult or in extreme cases undoable.^{8,11-13} It is imperative to mention that a CT scan assessment of the arterial anatomy should be complemented by a standard and thorough system assessment to identify any unexpected non-vascular findings.

Treatment options

Treatment options include traditional open-surgical repair, endovascular repair, or a hybrid approach. Endovascular techniques include stent graft designs such as fenestrations or branches, to ensure visceral and renal arteries remain perfused. The hybrid approach involves combining surgical and endovascular techniques in which surgical bypasses are created for the branches so the main aneurysm can be excluded endovascularly with a stent.

Open

Open surgical repair (OSR) is the traditional method of treating complex AAAs but is associated with significant risks. The procedure involves suprarenal aortic cross-clamping which increases the risk of renal impairment, and an estimated 3% of patients go on to require haemodialysis.¹⁴ Further complications include ischaemic stroke, cardiac complications and death, with a recent 2022 meta-analysis of 22 studies demonstrating a 30-day mortality rate of 4.4% for open repair of juxtaparenal AAA.¹⁵ To overcome this, endovascular and hybrid techniques have been developed which will be discussed in the next sections, however, it is important to note that these too carry a significant burden of risk. For example, after fenestrated endovascular aneurysm repair (fEVAR)/ branched endovascular aneurysm repair (bEVAR), an estimated 2% of patients required new haemodialysis in the perioperative period.¹⁶

Table 1. Key anatomic measurements for planning complex aortic aneurysm repair.^{8,11-13}

Measurement	Notes	Adverse anatomical feature
Access vessel morphology (common femoral artery, external iliac artery, and subclavian arteries)		
Diameter	Minimum and maximum diameter should be recorded	Diameters <7 mm and >23 mm
Calcification	Burden and circumference of calcification in each vessel	Excessive calcification
Mural thrombus	Burden and circumference of thrombus	Thick and circumferential thrombus
Tortuosity	Tortuosity index in external and common iliac arteries	Excessive tortuosity
Length	Length measured along the centreline	<2 cm
Thoracoabdominal angulation	Angulation measured in coronal and sagittal views	>75°
Proximal landing zone (PLZ)		
Angulation	Angulation measured in coronal and sagittal views	>65°
Length	Measured at centreline	<2 cm
Diameter	Diameters should be recorded perpendicular to the centreline and along at least the first 2 cm	>31 mm
Shape	Diameter should be taken every 2 mm along the length of PLZ	Conical or reverse conical if oversizing exceeds 20%
Calcification and mural thrombus	The burden and circumference	Excessive calcification or thick thrombus >10 mm
Visceral segment of the abdominal aorta		
Aortic diameter at each visceral branch	Measurements taken perpendicular to centreline	Narrow diameter <20 mm and wide diameter >36 mm
Aortic diameter at infrarenal level	Measurements taken perpendicular to centreline	Narrow diameter <18 mm
Aortic diameter at bifurcation	Measurements taken perpendicular to centreline	<20 mm
Aortic thrombus at the level of visceral arteries	Circumference and diameter thickness	Thick and irregular thrombus (shaggy aorta)
Distance from each visceral branch to common iliac bifurcation	Distance taken from the midpoint of each branch to the one below	Distance <5 mm between 2 adjacent vessels
Distance between each visceral artery		
Side branch information		
Clock location of visceral vessel origins		
Diameter of each visceral branch	Measurements taken along at the least the first 2 cm	<4 mm and >11 mm
Number and diameter of accessory renal arteries		Accessory and small renal arteries
Stenosis and calcification at the origin of branch vessels		>60 ostial stenosis
Early branch from the visceral artery		Jejunal branch or large polar renal artery branch
Hypogastric arteries	Patency and diameter	Occlusion of hypogastric arteries increases the risk of spinal cord ischaemia or aneurysmal artery >12 mm

Endovascular repair

Endovascular stents and techniques have been developed to incorporate the visceral branches and these include grafts with fenestrations or branches and techniques like chimney.

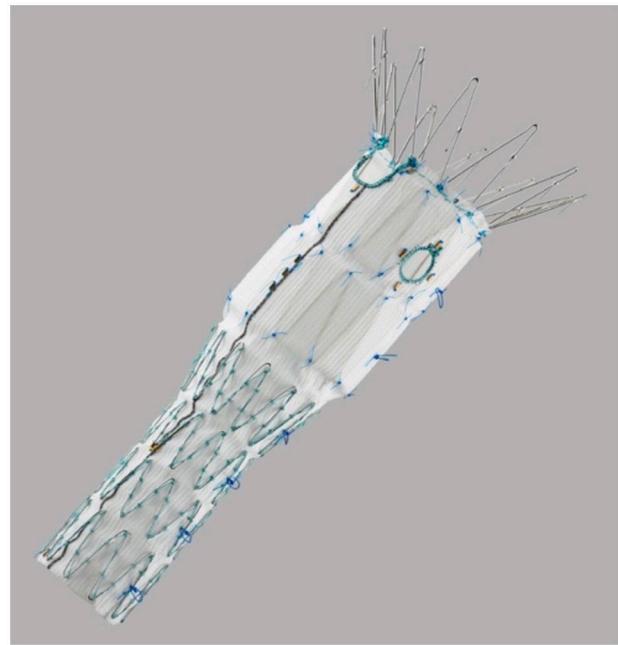
Fenestrated endovascular aneurysm repair

These fenestrations are holes in the dacron or ePTFE mesh of the stent that can be small, large or semicircular/incomplete holes (scallops), and are reinforced with nitinol wire. These are often custom-made and thus take several weeks to make but can also be off the shelf.¹⁷⁻¹⁹ In complex AAAs, the proximal landing zone, or even the aneurysm itself can include the visceral branches. Fenestrated stent grafts allow the proximal end of the stent to be positioned at a more appropriate segment of the aorta, thus overcoming this challenge.

There are currently 3 commercially approved devices in Europe which are the Zenith Fenestrated AAA Endovascular Graft by Cook Medical (Bloomington, IN, United States) and

Fenestrated Anaconda Custom AAA Stent Graft System (Terumo Aortic, Inchinnan, United Kingdom), and Fenestrated Treo (TerumoAortic, Somerset, NJ, United States), all of which are custom-made. The majority of current research involves the Zenith graft as this is FDA-approved and has been in the market for a long time but its design has several limitations. Specifically, it is less suitable if the branch vessels arise in close proximity to each other and/or the presence of accessory renal arteries; the branches can only be cannulated through femoral access and have no option for partial deployment and adjustment during the procedure. The Anaconda system is a newer device that overcomes some of these limitations, it does not have a metal stent on the graft body which allows versatility of the fenestrations, can be cannulated via upper limb or femoral access, and can also be used for angulated infrarenal necks using the feature of partial deployment and adjustment during the procedure.²⁰ Both devices have promising outcomes however a recent review by Jubouri et al²¹ showed that the Fenestrated Anaconda system has a superior performance, with reduced

Figure 2. (A-D) A patient with 6.5 cm juxtaparenal aneurysm. (E) Fluoroscopic insertion of a custom-made fenestrated Anaconda stent graft with bridging stents into the coeliac, superior mesenteric and both renal arteries. (F-H) Post-operative images demonstrate the fenestrations and bridging stents into the visceral vessels, with the aneurysm satisfactorily excluded.


procedural blood loss and lower re-intervention rates when compared to the Zenith graft.²²

Newer devices are being developed, such as the Zenith p-Branch device by Cook Medical (Bloomington, IN, United States), which is an off-the-shelf device with standard configurations, and thus has the advantage of being readily available rather than needing several weeks for custom production. This device comes in 2 configurations for the renal fenestrations—one with both arising at the same level and the other with the left renal artery offset 4 mm caudally; furthermore, these are adaptive pivot fenestrations which allows for a degree of flexibility. There is also a scallop for the coeliac trunk and a fenestration for the SMA. However, despite these adaptations, less than 50% of patients were found to have anatomy suitable for the Cook p-branch device as per the instructions for use (IFU) criteria in a single-centre study.²³ The limited evidence regarding this device shows it is acceptable but less favourable in comparison with custom devices. The p-Branch device had higher rates of renal complications, presumably as insertion requires more manipulation during renal artery stenting; and almost 5 times higher rates of re-intervention.²⁴

Fenestrated grafts are inserted under fluoroscopic guidance, similarly to non-fenestrated grafts. The Anaconda instructions for use recommend the fenestrated graft be oversized by 10%-25%. After insertion, the fenestrations are identified by markers and adjusted to be aligned with the target branches. Once this positioning is satisfactory, the branched vessels can be cannulated and stented under fluoroscopic guidance to create a fenestrated branch stent.²⁵ The bridging stents are covered ones and should allow flaring of the aortic side of it. This flaring serves for fixation and sealing. These devices and a case study are shown in Figures 2-4.²⁶⁻²⁸

Branched endovascular aneurysm repair

Branched stents have downward-facing side branches that are attached to the main body of the stent which improves the seal. These are particularly useful if an aneurysm involves the origin of the visceral branches, or for branches that originate from a large aortic lumen, for example, coeliac and superior mesenteric arteries as well as for thoracoabdominal aneurysms. Some

Figure 3. Zenith fenestrated AAA endovascular graft proximal body. Courtesy of Cook Medical.²⁶

operators also prefer to use this design in cases where there is significant angulation at the level of visceral vessels as it allows more freedom to cannulate the side branches. The stent design can be modified to combine fenestrations and branches to allow better orientation and alignment of the bridging stents, and or facilitate easier cannulation of the side vessel. A covered stent is deployed through the fenestration, into the visceral branch, with its proximal end remaining within the tunnel inside the main aortic stent.²⁹

Currently, available devices are off-the-shelf branched stents which include Zenith t-Branch Thoracoabdominal Endovascular Graft (Cook Medical, Bloomington, IN, United States) and E-nside TAAA multibranched stent graft system (Artivion Inc, Kennesaw, GA, United States). These stents have

Figure 4. (A) Fenestrated Anaconda custom AAA stent graft system. Courtesy of Terumo Aortic.²⁷ (B) Fenestrated Treo device. Courtesy of Terumo Aortic.²⁸

been used for thoracoabdominal aneurysms, including Crawford type IV TAAA. The configuration of all 3 stents is similar, with a main stent body and branched stents to incorporate the 4 visceral arteries (coeliac, SMA and 2 renal arteries), however, they differ in several technical characteristics including length and angulation of the branches. Additionally, the branches in the E-side system are pre-cannulated inner branches, unlike the TAMBE and t-branch devices which have outer branches. The majority of studies have been done on the t-branch and custom-made Cook stent graft systems and these showed theoretical anatomical feasibility of 32%-88%, which is higher than for TAMBE (30%) and E-side (43%), though the latter have very few studies. Also in the context of this review, it is important to note these studies included all 4 Crawford type TAAAs, and not just type IV.^{30,31}

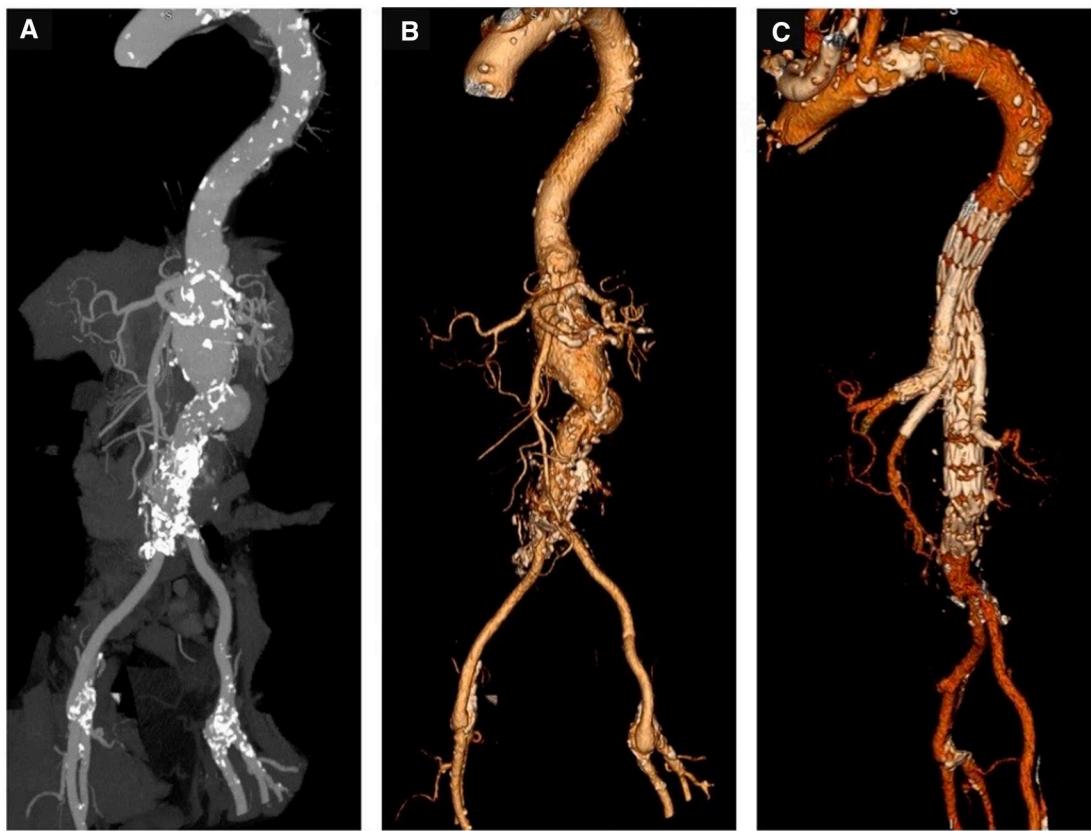
As with fEVAR, branched stents require femoral access to deploy the main stent device. An antegrade approach with access in the brachial or axillary arteries is usually required to cannulate and bridge the branched grafts. The stent is inserted transperitoneally and branches positioned appropriately at the visceral arteries which are then cannulated through the upper extremity access and branched stents deployed. Brachial/axillary access is preferred over contralateral femoral access in these stents owing to their downward-oriented branches, however, with newer technology and steerable sheaths, it may be feasible to perform this retrograde via femoral access.^{32,33} The devices and case studies are shown in Figures 5-7.^{34,35}

Chimney endovascular aneurysm repair

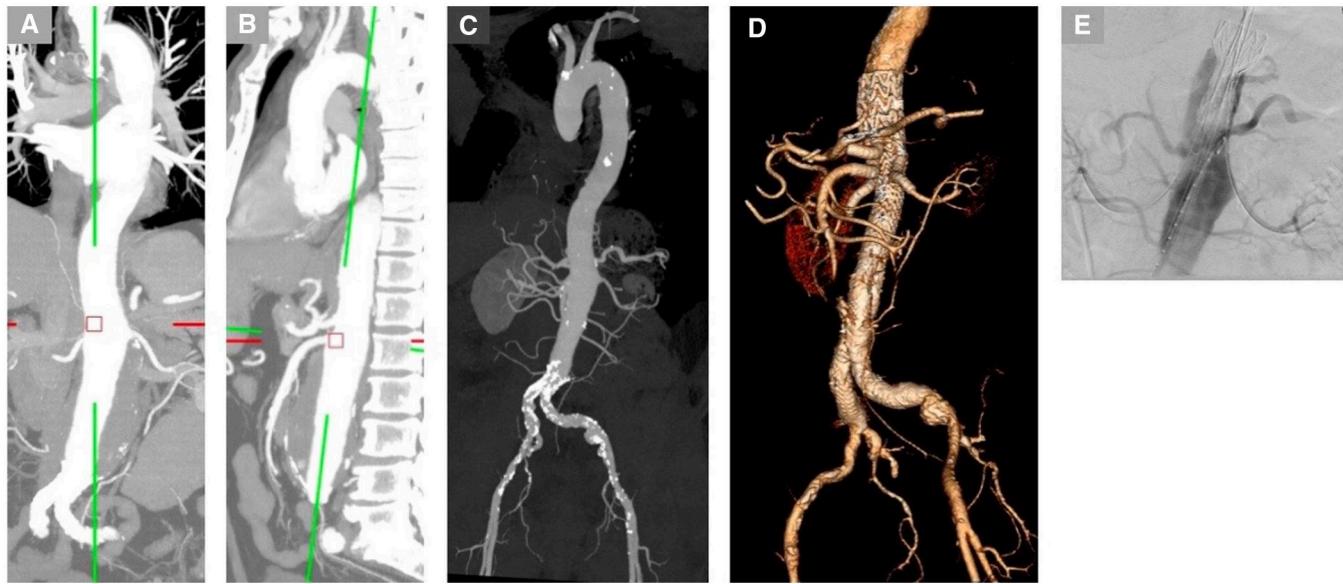
The Chimney (also known as Snorkel) technique involves placing covered stents into the aortic visceral branches

alongside the thoracic or abdominal stent graft to preserve flow to these branches. Similar techniques described include the sandwich and periscope techniques.^{36,37} In the chimney technique, the proximal extent of the visceral branch graft extends above the aortic graft, whereas in the periscope technique, the proximal end of the visceral graft extends inferior to the distal end of the aortic graft.³⁸ These are particularly useful in the time-sensitive urgent cases, as custom-made branched or fenestrated grafts can take several weeks to make.¹⁸ Importantly, the ESVS guidelines recommend considering the chimney technique only in emergency or bailout cases, and limiting the number of chimneys to ≤ 2 .⁶ Other advantages of the chimney technique over fenestrated grafts include reduced operative time, reduced blood loss and decreased radiation dose.³⁹ For patients with narrower vessels, the chimney technique allows the use of standard-sized EVAR devices of 14-18 Fr, as opposed to fenestrated stents which, being more rigid, require larger delivery systems (20-22 Fr).³⁸ However, a significant limitation is the formation of gutters between the graft and aortic wall, resulting in type I endoleaks.⁴⁰ A case study is shown in Figure 8.

Physician-modified endografts


Another technique used for more urgent cases is physician-modified stent grafts. Custom fenestrations can be made by the operating physician using cautery and a radio-opaque marker, and often these are used along with covered bridging stents through the fenestration.⁴¹

There is heterogeneity in the technique used, as there is no agreed standard. In general, the graft is modified on a back table in the operating room after a plan is made preoperatively from imaging. The graft is partially deployed and fenestrations are marked using this plan. With diathermy, wire cutters and cautery the graft and metal stent struts are cut to create fenestrations which can then be reinforced with snares. After this, the graft is resheathed and flushed with an antibiotic such as rifampicin, to minimise contamination.⁴²


Newer technologies are being developed and trialled such as using automated planning software and 3D printed models of the patient's anatomy to assist the physician when creating these fenestrations with promising results.⁴³

Spinal cord ischaemia

Spinal cord ischaemia (SCI) remains an important challenge in both open and endovascular complex aortic surgery. The spinal cord is supplied by not only radicular arteries but also a complex collateral circulation from the subclavian, internal thoracic, lumbar and hypogastric arteries. As a result, SCI is primarily a problem in TAAA repair, and less so in abdominal aortic aneurysms. However, certain complex AAAs like type IV TAAA, those needing extensive aortic coverage, occluded hypogastric arteries or previous aortic surgery are at higher risk of SCI. Since spinal cord perfusion depends on systemic blood pressure and cerebrospinal fluid (CSF) pressure, the risk can be minimised by CSF drainage, maintaining systemic blood pressure, preserving collaterals, staging the procedure and neuromonitoring. ESVS guidelines do not recommend routine CSF drainage in endovascular complex AAA repair but it can be considered in cases with risk factors described above. Another consideration is when using off-the-shelf devices, the extent of aortic coverage should be taken into account to minimise SCI.^{6,44}

Figure 5. (A, B) Pre-operative imaging demonstrates a Crawford type IV TAAA. (C) The aneurysm was treated with Jotec (Artivion) BEVAR included 3 external branches to the coeliac trunk, SMA, and left renal artery. The aneurysm was satisfactorily excluded.

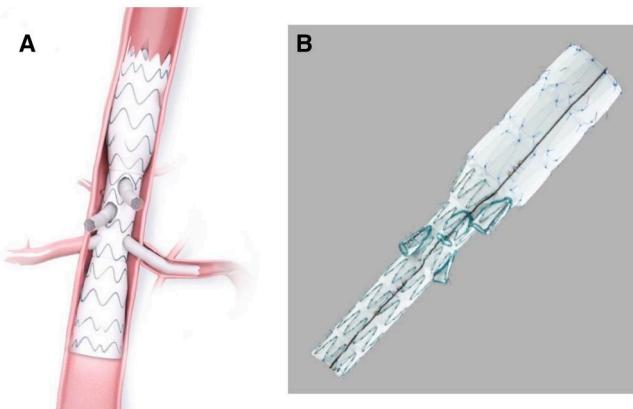
Figure 6. An elderly patient presented with asymptomatic 7 cm juxtarenal AAA. (A-C) Pre-operative imaging demonstrates the aneurysm. (D) The patient was treated with a GORE TAMBE device with 4 internal branches (to the coeliac, superior mesenteric and both renal arteries). Post-operative reconstructed images show the BEVAR stent with branches and excluded aneurysm. (E) Fluoroscopic imaging demonstrates the insertion of the stent.

Imaging follow-up and surveillance

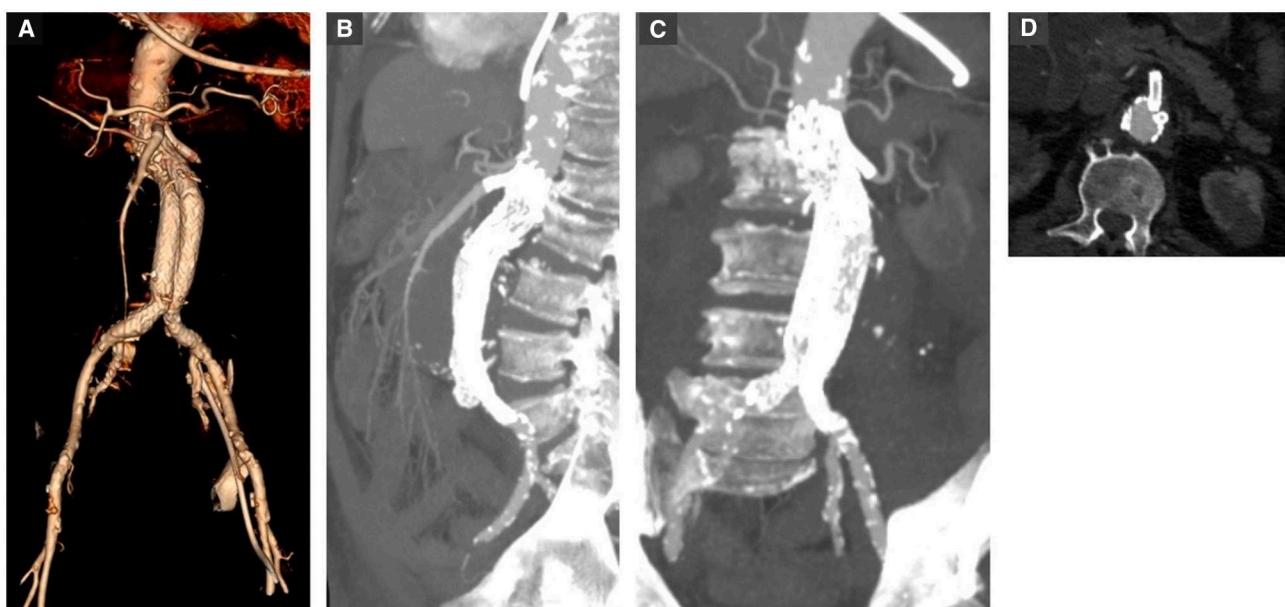
There are no clear consensus guidelines regarding surveillance imaging after complex AAA repair, though logically the follow-up would be at least as frequent as after repair for infra-renal AAA and continued long-term. The ESVS guidelines on endovascular repair of juxtarenal AAAs recommend

comprehensive follow-up which includes yearly CT angiography.⁶ The IFU for the Zenith Fenestrated Device are thorough and can be extrapolated for most if not all complex AAA repairs. This recommends lifelong surveillance, as with a non-fenestrated device, with additional consideration to evaluate vessel patency at the fenestrations through CT

angiography or duplex ultrasound. The specific follow-up protocol includes completion of angiography performed during the procedure, followed by CT angiography at 30 days and then yearly. Optional CT angiography can be performed at 6 months if there are concerning features on the initial 30-day CT.¹³ Unlike conventional EVAR, CT is preferred over duplex ultrasound given that fenestrated/branched grafts are more complex. There is, however, a role for duplex ultrasound to be used as an adjunct to non-enhanced CT for assessing vessel patency in patients for whom contrast is contraindicated. Newer studies show promising results regarding using renal duplex ultrasound for annual surveillance instead of CT but robust evidence is still lacking.⁴⁵


The primary aim of imaging follow-up is to identify endoleaks, monitor sac size and assess device function (migration, component overlap and failure). If complications are noted on CT then further studies such as 3D reconstructions or angiography can be performed. Concerning features may necessitate more frequent imaging follow-up, though local

guidelines on this will vary.⁶ The key postoperative imaging findings are listed in Table 2.¹³


Evidence

fEVAR and bEVAR

Unlike infra-renal abdominal aortic aneurysms, the current evidence of comparing endovascular techniques with OSR for complex abdominal aortic aneurysms is limited to observational and population-based studies, with no randomised controlled trials.⁴⁶ This is a challenge as there is often heterogeneity in patient characteristics,^{47,48} significant variations in reporting standards and sometimes contaminated by industry-sponsored studies with limited quality control. Nevertheless, in a recent meta-analysis by Patel et al⁴⁷ which included 24 studies from 2009 to 2020 and 7854 patients, the reported 30-day perioperative mortality for fEVAR (3.1%) was found to be better than OSR (4.4%). However, mid-term mortality was similar between the 2 groups. Zlatanovic et al, on the other hand, reported midterm mortality, from 16 studies of around 10 years of follow-up in 4369 patients, to be higher in fEVAR (12.3%) when compared with OSR (8.1%), demonstrating a catch-up effect.⁴⁹ Another relevant meta-analysis also by Zlatanovic et al⁵⁰ reported the short-term outcomes of 22 studies and 8853 patients. In these meta-analyses,^{47,49,50} the rates of perioperative as well as mid-term renal failure were similar between the fEVAR and OSR groups. The rate of perioperative myocardial infarctions and major adverse cardiovascular events were lower in fEVAR (2.5% and 5%, respectively) compared to OSR (4.2% and 6%, respectively). Regarding rates of re-intervention, perioperatively there was no statistical difference between the groups (7.9% for fEVAR and 9.7% for OSR), but mid-term rates were higher in fEVAR (17.1%) than OSR (3.6%), demonstrating again a catch up effect. There was a higher rate of medium-term visceral branch occlusion/stenosis and spinal cord injuries in fEVAR when

Figure 7. (A) E-inside TAAA multibranched stent graft system. Courtesy of Artivion Inc.³⁴ (B) Zenith t-Branch thoracoabdominal endovascular graft. Courtesy of Cook Medical.³⁵

Figure 8. An octogenarian patient presented with an 8 cm abdominal aortic aneurysm and impending rupture. The case was treated with EVAR stent and urgent chimney procedure to the left renal artery and SMA. (A-D) Post-procedure imaging demonstrates the excluded aneurysm and patent visceral arteries.

Table 2. Key post-operative imaging findings.¹³

Findings
Maximum diameter of the aneurysm corrected to the centre-line Endoleak and type
Stent integrity, including kinking and fractures
Stent position, including stent migration and component overlap
Branch vessel patency

compared with OSR. This could be because fEVAR requires a longer proximal landing zone, has a longer operative time, increased blood loss, and more manipulation of the visceral vessels which are all predictors of SCI.

The meta-analysis by Zhou et al⁴⁸ compared fEVAR, bEVAR, chimney endovascular aneurysm repair (chEVAR) and OS and included 25 studies from 2009 to 2021 and 5149 patients with complex AAAs (juxtarenal, pararenal, suprarenal, and TAAA). Though they included studies with type I-III TAAA as well, these were very few and so parameters that included those studies have not been described in this review. They found that fEVAR and OSR had no significant difference in 12- or 24-month branch vessel patency. In terms of re-intervention rates, there was no significant difference at 30 days but at 24 months, FEVAR had higher re-intervention rates than OSR (OR, 2.48; 95% CI, 1.08-5.73). These findings are consistent with those of Patel et al,⁴⁷ Zlataanovic et al,⁴⁹ and Zlataanovic et al.⁵⁰ For the complications of bowel and limb ischaemia, there was no significant difference between fEVAR and OSR.⁴⁸ The evidence for bEVAR alone versus open surgery is scarce as there are only a few relevant studies with a small sample size. All these meta-analyses are limited as evidence for complex AAAs including type IV TAAAs is insufficient since only observational studies have been published.

The most relevant evidence is probably the 2024 COMPASS study which compared short and mid-term outcomes of fEVAR and OSR cohorts.⁵¹ A total of 1916 propensity-matched patients were included and classified according to aneurysm neck length (juxtarenal: 0-4 mm, short neck: 5-9 mm, and complex neck: ≥ 10 mm). Further stratification was done into standard and high risk based on the British Aneurysm Repair score for perioperative risk. In the perioperative period, they found lower mortality after fEVAR (2.2%; OR, 0.25; 95% CI, 0.10-0.64; $P = .001$) than OSR (4.5%), lower early complication rate after fEVAR (55.7%; OR, 0.57; 95% CI, 0.43-0.74; $P < .001$) than OSR (62.4%) and shorter hospital stays after fEVAR (4 days) than OSR (7 days). These findings are consistent with existing literature showing more favourable perioperative outcomes after fEVAR than after OSR. Mid-term outcomes were reported for a median follow-up of 3.5 years. During this period, excluding perioperative deaths, the all-cause mortality was higher in fEVAR (hazard ratio(HR), 2.01; 95% CI, 1.46-2.77) than after OSR, showing again the catch effect seen by Zlataanovic et al.⁴⁹ Notably, however, the COMPASS study performed subgroup analysis showing no significant survival difference between fEVAR and OSR for the juxtarenal aneurysm cohort in standard-risk (HR, 1.64; 95% CI, 0.991-2.71; $P = .054$) and high-risk groups (HR, 2.14; 95% CI, 0.95-4.80; $P = .066$). This higher late all-cause mortality for fEVAR was driven predominantly by the standard-risk short neck (HR, 2.83; 95% CI, 1.21-6.64; $P = .017$) and standard-risk complex neck groups (HR, 4.18; 95% CI, 1.80-9.67;

$P = .001$). Similarly, overall mortality was greater after fEVAR (HR, 1.4; 95% CI, 1.05-1.87; $P = .020$) than after OSR. However, specifically for aneurysm-related mortality, there was no significant survival difference between the fEVAR (HR, 1.4; 95% CI, 1.05-1.87; $P = .020$) and OSR cohorts. Regarding the rates of secondary intervention, the findings were in line with current data, demonstrating higher mid-term rates after fEVAR (HR, 5.29; 95% CI, 3.36-8.33; $P < .001$) than OSR, despite there being no significant difference in the early phase ($P = .26$).⁵¹

Overall the results of the COMPASS study showed a significant perioperative mortality and morbidity advantage of FEVAR over OSR which was reversed in the mid-term period. This effect was most marked in the short neck and complex neck groups, while the juxtarenal aneurysm cohort showed equivalent mid-term survival after FEVAR compared to OSR.⁵¹ Further studies are summarised in Table 3.^{16,52-64}

Chimney endovascular aneurysm repair

The recent systematic reviews and meta-analyses by Patel et al,⁴⁷ and Zlataanovic et al,⁴⁹ described in the previous section also compared chEVAR with OSR for complex abdominal aortic aneurysms (not including type IV thoracoabdominal aneurysms).⁵⁰ The results showed that the perioperative mortality of chEVAR (3.6%-4.8%) was similar to or better than OSR (4.4%-5.5%), and mid-term mortality was similar between the 2 groups. Regarding complications, there was no statistically significant difference between the rates of renal failure for chEVAR (15.7%) and OSR (19.3%). The rate of perioperative myocardial infarctions and major adverse cardiovascular events were lower chEVAR (3.8% and 4.9%, respectively) compared to OSR (4.2% and 6%, respectively). For re-intervention, the perioperative rates were not statistically different between the groups (9.1% for chEVAR and 9.7% for OSR), but mid-term rates were higher in chEVAR (16.1%) than OSR (3.6%). Similarly, there was a higher rate of medium-term visceral branch occlusion/stenosis in chEVAR than OSR (OR, 16.82; 95% CI, 2.79-176.7). However, the authors noted overall low quality studies in 11 out of 22 included studies and significant risk of bias.^{49,50}

The meta-analysis by Zhou et al⁴⁸ as described in the previous section looked at chEVAR versus OSR for complex AAAs including TAAAs. As before, we have only described the parameters that did not include studies of type I-III TAAA. They found that branched vessel patency rates between chEVAR and OSR were not statistically different at 12 months, however at 24 months, chEVAR had lower branch vessel patency rates than OS (OR, 0.09; 95% CI, 0.02-0.48). A similar trend was seen with re-intervention rates—there was no statistical difference at 30 days but at 24 months, chEVAR had higher rates than OS (OR, 3.07; 95% CI, 1.15-8.18). These findings are similar to those seen by Patel et al⁴⁷ and Zlataanovic et al.⁴⁹ As was seen with fEVAR, the rates of bowel and limb ischaemia were similar for chEVAR and OSR.⁴⁸ Further studies are summarised in Table 4.^{58,59,65-67}

The quality of studies on chEVAR versus OSR is limited by retrospective observational design and a high number of emergent cases that are unsuitable for open surgery, thus increasing the dissimilarity of the patients and furthering the possibility of bias.

Table 3. Highlighting the main results of some of the major studies on fenestrated/branched endovascular repair of complex abdominal aortic aneurysms.

Authors, year, journal	No. of patients undergoing FEVAR/BEVAR; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Haulon et al, 2023, Journal of Endovascular Therapy ⁵²	186 patients Prospective study Complex abdominal aortic aneurysms: Juxtarenal AAA—48.9% Pararenal—15.1% Type IV T AAA—23.1% Other—12.9%	All patients underwent fbEVAR for the treatment of aortic aneurysms Branched and/or fenestrated custom-made device (Cook Medical)—96.2% Zenith Fenestrated (Cook Medical, CE-marked)—3.8%	Technical success—97.8% 30-day outcomes: 30-day mortality—4.3% Renal failure—8.1% Stroke—1.6% Aneurysm rupture—0.5% Endoleak at procedure: Type I proximal—1.1%; Type I distal—1.6% Type II—1.4% Type III—3.2% Type IV—none Undetermined—0.5% Endoleak at 2 years: Type I proximal—0%; Type I distal—6.5% Type II—15.4% Type III—4.9% Type IV—none Undetermined—0.8% Initial success—94.4% 30-day outcomes: 30-day mortality—5.5% Secondary intervention—15.6% Dialysis—1.6% Stroke—0.2% Aneurysm rupture—0.8% Adverse event rate—34.3% (368/1073)	Mean follow-up was 1.7 ± 0.6 years
Haulon et al, 2023, Journal of Endovascular Therapy ⁵²	1073 patients Retrospective study Complex abdominal aortic aneurysms. No limits were placed on the type of aortic aneurysm eligible for inclusion in either study.	All patients underwent fbEVAR for the treatment of aortic aneurysms Branched and/or fenestrated custom-made device (Cook Medical)—80.7% Zenith Fenestrated (Cook Medical, CE-marked)—19.3%	Technical success—98% 30-day mortality rate—0.9% Peri-operative spinal cord ischaemia—0.6% Permanent dialysis—1 patient Occlusion—14 target vessels 47 re-interventions were performed in 38 patients Estimated survival at 5 years—69.3 ± 3.1%. Estimated freedom from aneurysm-related death at 5 years—98.8 ± 0.7%	Mean follow-up was 3.2 years
Katsargyris et al, 2023, European Journal of Vascular and Endovascular Surgery ⁵³	349 patients Retrospective study Short neck AAA—13.5% Juxtarenal AAA—68.8% Suprarenal AAA—17.8%.	Stent grafts were customised based on the Cook Zenith system (William A. Cook Australia, Ltd, Brisbane, Australia) fitting fenestrations and scallops 922 of 1223 vessels were stented with a bridging stent graft	Technical success—98% 30-day mortality rate—0.9% Peri-operative spinal cord ischaemia—0.6% Permanent dialysis—1 patient Occlusion—14 target vessels 47 re-interventions were performed in 38 patients Estimated survival at 5 years—69.3 ± 3.1%. Estimated freedom from aneurysm-related death at 5 years—98.8 ± 0.7%	Mean follow-up was 49.3 ± 32.2 months (range 1-127 months)
Schreuder et al, 2023, Vascular and Endovascular Surgery ⁵⁴	172 patients Prospective study Juxtarenal AAA—94.8% Suprarenal AAA—5.2% 466 patients	Cook Zenith Fenestrated endograft—92.4% Fenestrated Anaconda endograft—7.6%	30-day mortality—1.2% Survival rate at 1 year—90.7% Survival rate at 3 years—75% Survival rate at 5 years—59.9% Early outcomes for complex AAA:	Median follow-up was 5.9 years (interquartile range 3.0-8.8)

(continued)

Table 3. (continued)

Authors, year, journal	No. of patients undergoing FEVAR/BEVAR; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Dias-Neto et al, 2022, Journal of Vascular Surgery ⁵⁵	Prospective study Complex AAA—138 patients Type IV TAAA—141 patients Type I-III TAAA—187 patients	Patients were treated with an off-the-shelf multibranched stent graft (r-Branch; Cook Medical Inc, Bloomington, IN) or patient-specific manufactured devices (Cook Medical Inc) with any combination of up to 5 fenestrations or directional branches Patient-specific device—88.2% Off-the-shelf r-Branch—11.8%	30-day mortality—0.7% Grade 3 spinal cord ischaemia—1.4% Early outcomes for type IV TAAA: 30-day mortality—1.4% Grade 3 spinal cord ischaemia—1.4%	Mean follow-up was 28 months (95% CI, 25-30 months)
Dossabhoy et al, 2022, Journal of Vascular Surgery ⁵⁶	158 patients Retrospective study Complex aortic aneurysms (juxtarenal aneurysms)	All patients had fenestrated endovascular aneurysm repair using the Zenith fenestrated device (Cook Medical, Inc, Bloomington, IN, United States)	30-day mortality—1.9% 51 total re-interventions • 31 branch related • 13 for endoleaks (4 type Ia, 3 type Ib, 2 type II, 4 type III) • 5 limb related • 1 access related • 1 for bowel ischaemia	Mean follow-up was 33.9 ± 24.3 months
Oderich et al, 2021, Annals of Surgery ¹⁶	430 patients Prospective study Pararenal AAA—31% Type IV TAAA—31% Type I-III TAAA—38%	Patients underwent fenestrated and branched endovascular repair. Reinforced fenestrations were the predominant method of incorporation for patients with PRAs (86%) and Type IV TAAAs (87%), and directional branches were used more commonly for Type I-III TAAAs (61%). Pararenal AAA group: Patient-specific devices—99% Off-the-shelf multibranched stent grafts—1% Type IV TAAA group: Patient-specific devices—93% Off-the-shelf multibranched stent grafts—7%	30-day outcomes for pararenal AAA: Any major adverse event—14% 30-day mortality—0.8% Acute kidney injury—11% New onset dialysis—2% Paraplegia—2% Respiratory failure—1% Myocardial infarction—3% Any stroke—1% Any spinal cord ischaemia—2% 30-day outcomes for Type IV TAAA: Any major adverse event—23% 30-day mortality—1.5% Acute kidney injury—18% New onset dialysis—2% Paraplegia—2% Respiratory failure—3% Myocardial infarction—5% Any stroke—3% Any spinal cord ischaemia—2% Estimated freedom from all-cause mortality at 5 years for Type IV TAAA—60% ± 8% Estimated freedom from all-cause mortality at 5 years for Type IV TAAA—66% ± 7% Estimated freedom from secondary intervention at 5 years for Type IV TAAA—70% ± 7% Estimated freedom from secondary intervention at 5 years for pararenal AAA—70% ± 7%	Mean follow-up was 26 ± 20 months (range, 0.1-75.3 months)

(continued)

Table 3. (continued)

Authors, year, journal	No. of patients undergoing FEVAR/BEVAR; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Van der Riet et al, 2021, Journal of Endovascular Therapy ⁵⁷	194 patients Retrospective study All had pararenal abdominal aortic aneurysms	All patients underwent FEVAR and at least 1 fenestration bridged with Advanta V12 BECS Zenith FSG (Cook Medical Inc, Bloomington, IN, United States)—96% Anaconda FSG (Terumo Aortic, Inchinnan, Scotland, United Kingdom)—4%	Technical success—93% Endoleak at completion angiography—5 patients (4 type Ia; 1 type III) In-hospital mortality—1.5% 30-day mortality—2.6% Estimated patient survival at 3 years—77% (95% CI, 69%–84%) Estimated freedom from all-cause re-intervention at 3 years—70% (95% CI, 61%–78%) 30-day outcomes: Mortality—2.47% Renal complications 1.85% Cardiopulmonary complications—4.94% Bowel ischaemia—1.23% Stroke—0.62% Lower limb ischaemia—0.62% Surgical site infection—1.85%	Median follow-up was 24.6 (interquartile range 1.6, 49.9) months.
Locham et al, 2019, Vascular and Endovascular surgery ⁵⁸	162 patients Retrospective study Juxtarenal AAA—74.07%, Pararenal AAA—11.11%, Suprarenal AAA—14.81	162 patients had fenestrated endografts	This study reported 30-day outcomes only	
O'Donnell et al, 2019, Journal of Vascular Surgery ⁵⁹	880 patients Registry data All patients had complex AAAs (defined as a proximal extent between the top of the coeliac artery and the lowest renal artery, or an aneurysm with a proximal extent below the renal arteries that was repaired with at least 1 scallop, fenestration, branch, or chimney/snorkel into a renal or visceral artery)	880 patients underwent FEVAR/BEVAR	Perioperative outcomes: Mortality within 30 days or within the index hospitalization—3.4% Any complication—2.7% Major adverse cardiac event—6.1% Acute kidney injury—17% End-stage renal disease—1.3% Reintervention—5% Mesenteric/Colonic Ischemia—2.5% Stroke/transient ischaemic attack—0.8% Myocardial infarction—3% 3-year survival: 90% TAAA types IV, V or PR aneurysm group: Acute renal failure—9.7% Spinal cord ischaemia—0.04% Estimated freedom from late target vessel occlusion at 5 years—93.12% (88.2–96.15) Estimated survival at 5 years—65.24% (57.44–71.96)	Median follow-up was 29 months (8.7–51.1 months).
Calster et al, 2018, Journal of Vascular Surgery ⁶⁰	468 patients Retrospective study Type IV—V TAAA or pararenal AAA—52.8% Types I–III TAAA—47.2%	All were with custom-made fenestrated or branched devices or with off-the-shelf branched devices (Zenith t-Branch), manufactured by Cook Medical (Bloomington, IN, United States) FEVAR—80.1% BEVAR—9.2% combination F/BEVAR—10.7%	All patients: Early occlusion—0.7% of the stented target vessels 30-day mortality—4.9% Endoleaks during follow-up—118 patients Type IA, IB, and IC endoleaks—10, 13, and 3 patients, respectively Type II endoleak—91 patients Type III endoleak—26 patients	(continued)

Table 3. (continued)

Authors, year, journal	No. of patients undergoing FEVAR/BEVAR; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Tinelli et al, 2018, Journal of Vascular Surgery ⁶¹	102 patients Retrospective cohort study analysing prospectively collected data All were pararenal AAAs which include juxtarenal, suprarenal, and type IV TAAAs	All patients had custom-made fenestrated or branched stent grafts from the manufacturer Cook Medical (Bloomington, IN, United States)	Perioperative follow-up: 30-day mortality—2.9% Dialysis—4.9% Permanent dialysis—2.9% Cardiac complications—3.9% Early re-intervention—11.8% Pulmonary complications—5.9% Spinal cord ischaemia—0 Midterm follow-up: New permanent dialysis—2.9% Mortality—24% Re-interventions—11 patients 30-day postoperative mortality—2.4% 30-day outcomes: Wound complication—3.5% Cardiac complication—2.2% Renal insufficiency—0.4% Dialysis 1.5% Stroke with neurologic deficit—0.9%	Median follow-up was 38.48 months (interquartile range, 46.59 months)
Glebova et al, 2015, Journal of Vascular Surgery ⁶²	458 patients Retrospective study All patients had abdominal aortic aneurysms	FEVAR—458 patients	30-day mortality—2.4% 30-day outcomes: Wound complication—3.5% Cardiac complication—2.2% Renal insufficiency—0.4% Dialysis 1.5% Stroke with neurologic deficit—0.9% 30-day mortality rate—6.2% Post-operative acute renal failure—29% Hemodialysis required—5.9% (permanent in 1 patient) 30-day freedom from renal occlusion—99.5% Renal-related endoleak rate during follow-up—3.7%	—
Martin-Gonzalez et al, 2015, European Journal of Vascular and Endovascular Surgery ⁶³	225 patients Retrospective study Juxtarenal/pararenal AAA—67.5% Type IV-V TAAA—10.7% Type I-III TAAA—21.8%	All were with fenestrated or branched endografts manufactured by Cook Medical (Bloomington, IN, United States) Fenestrated—187 patients Multibranched—38 patients	30-day mortality (95% CI) was 3.1 (2.9-3.3) years	Median follow-up (95% CI) was 3.1 (2.9-3.3) years
Amiot et al, 2010, European Journal of Vascular and Endovascular Surgery ⁶⁴	134 patients Prospective study Juxtarenal AAA—73.9% Suprarenal AAA—20.1% Type IV TAAA—6%	All patients had a fenestrated endograft manufactured by Cook Inc (Bloomington, IN, United States)	Early follow-up: 30-day mortality rate—2% Transient dialysis—3% Permanent dialysis—1% Endoleak—1.2% (16 patients: 3 type I; 12 type II; and 1 type III) Late follow-up: Mortality—12 patients Procedure-related re-interventions—12 patients Type I endoleak—1 Type II endoleak—15 Type III endoleak—1	Median follow-up was 15 months (range 2—53 months)

Table 4. Highlighting the main results of some of the major studies on chimney/snorkel endovascular repair of complex abdominal aortic aneurysms.

Authors, year, journal	No. of patients undergoing Chimney repair; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Alfawaz et al, 2021, Annals of Vascular Surgery ⁶⁵	79 patients Retrospective study Pararenal AAA—24.0% Type IV TAAA—68.4% Type III TAAA—7.6%	208 parallel grafts were placed Self-expanding covered stents (Viabahn; W.L. Gore) were used for the renal arteries Balloon-expandable covered stents (iCAST; Atrium) were used for the SMA and Coeliac	Technical success—100% Peri-operative mortalities—6 patients End-stage renal disease—2 patients Paraplegia from spinal cord ischaemia—No patients SMA and Coeliac stents patency—100% Renal parallel graft patency—95% Endoleaks on follow-up imaging: Type II—12.6% Type III—none	Median clinical follow-up was 12 months
Touma et al, 2020, European Journal of Vascular and Endovascular Surgery ⁶⁶	201 patients underwent complex abdominal aortic endovascular repair using ChEVAR. Juxturenal AAA—46.8% Pararenal AAA—33.3% Type IV TAA—5% Failures of prior repairs—15.1%	343 branch vessels were re-vascularised (270 renal, 59 SMA, 12 coeliac, 2 polar renal arteries). Devices used: Zenith (Cook)—56.2% Endurant (Medtronic)—19.4% C3 (Gore)—17.4% AFX (Endologix)—2.5% Others—4.5%	Intra-operative mortality—2 patients Major endoleaks (type Ia, Ib, and III) on completion angiography—11.9% Intra-operative thrombosis—7.8% Unexpected additional procedures—11.7% 30-day mortality—11.4% Major postoperative complications—30.3% Early re-interventions—14.9% Acute kidney injury—10.9% Permanent dialysis—1.9% Acute embolic stroke—4.5% Endoleaks: Type I proximal endoleak on the first post-operative imaging—11.9% Late type Ia endoleaks—10.1%	Follow-up was 14.7 ± 18 months
Locham et al, 2019, Vascular and Endovascular Surgery ⁵⁸	164 patients Retrospective study Juxturenal AAA—48.78% Pararenal AAA—20.73% Suprarenal AAA—30.49%	164 patients had chimney repair with a main body device other than fenestrated endografts plus renal stents	30-day outcomes: Mortality—7.32% Renal complications—6.10% Cardiopulmonary complications—6.10% Bowel ischaemia—3.66% Stroke—1.22% Lower limb ischaemia—1.83% Surgical site infection—1.22% Perioperative outcomes: Mortality within 30 days or within the index hospitalization—6.1% Any complication—34% Major adverse cardiac event—11.7% Acute kidney injury—19% End-stage renal disease—2.3% Reintervention—7% Mesenteric/Colonic Ischemia—2.3% Stroke/transient ischaemic attack—3.3% Myocardial infarction—5.6%	This study reported 30-day outcomes only
O'Donnell et al, 2019, Journal of Vascular Surgery ⁵⁹	260 patients Registry data All patients had complex AAAs (defined as a proximal extent between the top of the celiac artery and the lowest renal artery, or an aneurysm with a proximal extent below the renal arteries that was repaired with at least 1 scallop, fenestration, branch, or chimney/	260 patients underwent chimney/snorkel repair	—	(continued)

Table 4. (continued)

Authors, year, journal	No. of patients undergoing Chimney repair; type of study and aneurysm	Intervention/device used	Main findings	Follow-up
Donas et al, 2015, <i>Annals of Surgery</i> ⁴⁷	snorkel into a renal or visceral artery) 517 patients Retrospective study Juxtarenal AAA—69.6% Suprarenal AAA—25.0% Type IV TAAA—5.4%	In all, 898 target vessels were re-vascularised using chimney grafts Mean number of chimney grafts placed was 1.73 per patient (692 renal, 156 SMA, and 50 celiac)	3-year survival: 85% Perioperative technical success—97.1% Persistent type Ia endoleak—2.9% 30-day mortality—4.9% Late mortality at longest follow-up—15.5% Spinal cord ischaemia—0% Embolic stroke—1.7% Pneumonia—3.1% Myocardial infarction—2.1% Graft infection—0.2% Acute kidney injury—17.5% Temporary or permanent dialysis—1.5% Late-onset type Ia endoleak detected at 6 months—0.6% Estimated patient survival at 1 year—84.9% (range: 80.1%–88.0%), Estimated patient survival at 3 years—74.9% (range: 56.1%–79.4%)	Mean imaging follow-up was 17.1 ± 8.2 months (range: 1–70 months)

Table 5. Highlighting the main results of some of the major studies on physician-modified endograft (PMEG) repair of complex abdominal aortic aneurysms.

Authors, year, journal	No. of patients undergoing PMEG repair; type of study and aneurysm	Intervention/Device used	Main findings	Follow-up
Chait et al, 2023, <i>Journal of Vascular Surgery</i> ⁶⁹	156 patients Retrospective study Complex AAA—57% Type IV TAAA—21% Type I–III TAAA—22%	Modifications were created using Zenith TX2 or Alpha thoracic endografts (Cook Medical, Bloomington, IN) with 1–5 reinforced fenestrations, directional branches, or scallops	30-day and/or in-hospital outcomes for complex AAA: Mortality—2% Acute kidney injury—12% New onset dialysis 1% Paraplegia—1% Respiratory failure—7% myocardial infarction—6% Major stroke—1% 30-day and/or in-hospital outcomes for TAAA: Mortality—10% Acute kidney injury—22% New onset dialysis 4% Paraplegia—6% Respiratory failure—9% Myocardial infarction—3% Major stroke—3%	Mean follow-up was 49 ± 38 months (median, 47 months; IQR, 13–76 months).

(continued)

Table 5. (continued)

Authors, year, journal	No. of patients undergoing PMEG repair; type of study and aneurysm	Intervention/Device used	Main findings	Follow-up
Chan et al, 2023, Journal of Clinical Medicine ⁷⁰	37 patients Retrospective study Juxtarenal AAA—30 patients Type Ia endoleak after previous EVAR—5 patients Pseudoaneurysm after open infrarenal AAA—2 patients	Endurant II stent graft system (Medtronic, Minneapolis, MN, United States) was used to create the fenestrated physician modified endografts	Technical success—87% Perioperative outcomes: Endoleak at completion • Type I—none • Type II—14% • Type III—5% Acute kidney injury—5% Stroke/myocardial infarction/respiratory failure/bowel ischaemia—none Reintervention rate 5% Midterm outcomes: Target vessel patency at 1 year—96% Type II endoleaks during follow-up—33% Type I or III endoleak during follow-up— none. One-year overall survival was 93%— Perioperative outcomes: Mortality within 30 days or within the index hospitalization—2.7% Any complication—29% Major adverse cardiac event—5.4% Acute kidney injury—18% End-stage renal disease—1.4% Reintervention—2.7% Mesenteric/Colonic Ischemia—2.2% Stroke/transient ischaemic attack—0.9% Myocardial infarction—2.7% 3-year survival: 87%	Median follow-up was 17.7 months (range 1–47)
O'Donnell et al, 2019, Journal of Vascular Surgery ⁵⁹	256 patients Registry data All patients had complex AAAs (defined as a proximal extent between the top of the celiac artery and the lowest renal artery, or an aneurysm with a proximal extent below the renal arteries that was repaired with at least 1 scallop, fenestration, branch, or chimney/snorkel into a renal or visceral artery)	256 patients underwent physician-modified endograft repair	Early outcomes: Major adverse events for pararenal AAA—42% Major adverse events for type IV TAAA—65% Estimated survival at 1 year • For pararenal AAA—85% ± 4% • For type IV TAAAs 84% ± 7% Endoleaks: • Total 39% • Type I—1% • Type II—20% • Type III—13% • Type IV—none	Mean follow-up was 38 ± 26 months
Oderich et al, 2019, Journal of Vascular Surgery ⁷¹	145 patients Retrospective study Pararenal AAA—84 patients Type IV TAAA—26 patients Type I–III TAAA—35 patients	Physician-modified endografts were customized on-site under strict sterile technique using the Cook Zenith or TX2 platform (Cook Medical) with 1–5 reinforced fenestrations, scallops, or directional branches.		

Physician-modified endografts

Physician-modified endografts (PMEG) have shown promising published results for complex AAAs and type IV TAA. In a recent meta-analysis⁶⁸ of 909 patients from 20 studies, the rate of overall technical success was 99.4%, with aortic or aneurysm-related re-interventions being required in 2.2% of patients and no postoperative ruptures reported. Mortality at 30 days was 1.6% but this rose to 10.6% overall mortality. However, major adverse events (defined as death within 30 days, myocardial infarction, respiratory failure, renal failure, bowel ischaemia, major stroke and definitive paraplegia) occurred in 10.8% of patients. It's important to note that this study was limited as current published studies are entirely retrospective and again of low quality. Further studies are summarised in Table 5.^{59,69-71}

Gaps in the knowledge

Although there are promising reported outcome results of endovascular management of complex aortic aneurysms, high-quality evidence is still severely lacking. There are no randomised controlled trials nor high-quality registry, and in current published studies reporting is inconsistent. Although propensity-matched studies have been performed, patients who undergo endovascular repair over open are often more frail and co-morbid, which limits the comparability of outcomes. Prospective and randomised controlled trials are essential, and further studies should be done with standardised definitions and guidelines, such as those proposed by the Society of Vascular Surgery.⁵ Furthermore, the median follow-up time in most existing studies is short, with the majority of cited literature publishing only short-term, and occasionally medium-term outcomes. Data on long-term outcomes is important to address this limitation.

Future developments

Many exciting new technologies are being developed to improve planning, production and insertion of complex aortic stent grafts. With the advent of machine learning, there are now patient-specific simulations being developed to aid in pre-procedural planning and hence reduce delivery time for custom-made fenestrated grafts. Simulations can also be useful in device insertion by predicting graft torsion and displacement of the branch vessels.⁷² Technological refinements that allow lower device profile and development in image guidance techniques are also needed to improve the success rate, reduce radiation dose and shorten procedure time.

Conclusion

Endovascular aneurysm repair offers a minimally invasive method to treat complex AAAs with promising results, though evidence is lacking to prove the superiority of EVAR over OSR. Nevertheless, endovascular repair is developing rapidly with newer devices and advanced techniques to overcome the challenges of treating these complex aneurysms.

Funding

This work was supported by Imperial College London Healthcare Biomedical Research Centre.

Conflicts of interest

M.H. has the following conflicts of interest: Education grants from Terumoorta, Artivion and Gore &Associates.

References

1. Reise JA, Sheldon H, Earnshaw J, et al. Patient preference for surgical method of abdominal aortic aneurysm repair: postal survey. *Eur J Vasc Endovasc Surg.* 2010;39(1):55-61.
2. Powell JT, Sweeting MJ, Ulug P, et al.; EVAR-1, DREAM, OVER and ACE Trialists. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. *Br J Surg.* 2017;104(3):166-178.
3. Wilderman M, Sanchez LA. Fenestrated grafts or debranching procedures for complex abdominal aortic aneurysms. *Perspect Vasc Surg Endovasc Ther.* 2009;21(1):13-18.
4. Moulakakis KG, Mylonas SN, Dalainas I, et al. The chimney-graft technique for preserving supra-aortic branches: a review. *Ann Cardiothorac Surg.* 2013;2(3):339-346.
5. Oderich GS, Forbes TL, Chaer R, et al.; Writing Committee Group. Reporting standards for endovascular aortic repair of aneurysms involving the renal-mesenteric arteries. *J Vasc Surg.* 2021;73(1S):4S-52S.
6. Wanhaugen A, Van Herzele I, Bastos Goncalves F, et al.; Document Reviewers. Editor's choice—European Society for Vascular Surgery (ESVS) 2024 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. *Eur J Vasc Endovasc Surg.* 2024;67(2):192-331.
7. Recommendations | Abdominal aortic aneurysm: diagnosis and management | Guidance | NICE [Internet]. NICE; 2020. Accessed August 7, 2024. <https://www.nice.org.uk/guidance/ng156/chapter/Recommendations#repairing-ruptured-aneurysms>
8. Riambau V, Böckler D, Brunkwall J, et al. Editor's choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European Society for Vascular Surgery (ESVS). *Eur J Vasc Endovasc Surg.* 2017;53(1):4-52.
9. Scarfield P, Ryan J, Sallam M, et al. Preoperative assessment and optimisation prior to planned aortic aneurysm repair: a UK survey examining current practice and attitudes of vascular surgeons and vascular anaesthetists. *Perioper Med (Lond).* 2023;12(1):24.
10. LeMaire SA, Miller CC, Conklin LD, Schmittling ZC, Köksoy C, Coselli JS. A new predictive model for adverse outcomes after elective thoracoabdominal aortic aneurysm repair. *Ann Thorac Surg.* 2001;71(4):1233-1238.
11. Rodd CD, Design S, Cheshire NJ, Jenkins MP, Hamady M. The suitability of thoraco-abdominal aortic aneurysms for branched or fenestrated stent grafts—and the development of a new scoring method to aid case assessment. *Eur J Vasc Endovasc Surg.* 2011; 41(2):175-185.
12. Marone EM, Freyrie A, Ruotolo C, et al. Expert opinion on hostile neck definition in endovascular treatment of abdominal aortic aneurysms (a Delphi consensus). *Ann Vasc Surg.* 2020; 62:173-182.
13. Zenith® fenestrated AAA endovascular graft instructions for use [Internet]. Accessed April 3, 2024. https://ifu.cookmedical.com/data/IFU_PDF/IFU-FU_V3.PDF
14. Jongkind V, Yeung KK, Akkersdijk GJM, et al. Juxtarenal aortic aneurysm repair. *J Vasc Surg.* 2010;52(3):760-767.
15. Katsargyris A, Oikonomou K, Klonaris C, Töpel I, Verhoeven ELG. Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift? *J Endovasc Ther.* 2013;20(2):159-169.
16. Oderich GS, Tenorio ER, Mendes BC, et al. Midterm outcomes of a prospective, nonrandomized study to evaluate endovascular repair of complex aortic aneurysms using fenestrated-branched endografts. *Ann Surg.* 2021;274(3):491-499.

17. Chuter TAM. Fenestrated and branched stent-grafts for thoracoabdominal, pararenal and juxtarenal aortic aneurysm repair. *Semin Vasc Surg.* 2007;20(2):90-96.
18. Atkins AD, Atkins MD. Branched and fenestrated aortic endovascular grafts. *Methodist Debakey Cardiovasc J.* 2023;19(2):15-23.
19. Cox K, Yip HCA, Geragotellis A, et al. Endovascular solutions for abdominal aortic aneurysms: fenestrated, branched and custom-made devices. *Vasc Endovascular Surg.* 2023;0(0):15385744231185606.
20. Midy D, Becquemin JP, Mialhe C, Frisch N, Martinez R, Caradu C, EFEFA Research Group. Results of the French multicentric study of ANACONDA™ fenestrated endografts in the treatment of complex aortic pathologies (EFEFA Registry). *Ann Vasc Surg.* 2017;43:151-165.
21. Jubouri M, Surkhi AO, Tan SZCP, Bailey DM, Williams IM, Bashir M. Abdominal aortic aneurysm: can the Anaconda™ custom-made device deliver? An international perspective. *Front Cardiovasc Med.* 2022;9:959149.
22. Jubouri M, Hussain K, Saha P, et al. Endovascular solutions for abdominal aortic aneurysms: a comparative review of clinical outcomes with custom-made endografts. *Asian Cardiovasc Thorac Ann.* 2023;31(7):565-576.
23. Mendes BC, Oderich GS, Macedo TA, et al. Anatomic feasibility of off-the-shelf fenestrated stent grafts to treat juxtarenal and pararenal abdominal aortic aneurysms. *J Vasc Surg.* 2014;60(4):839-848.e2.
24. Sveinsson M, Sonesson B, Dias N, Björsses K, Kristmundsson T, Resch T. Five year results of off the shelf fenestrated endografts for elective and emergency repair of juxtarenal abdominal aortic aneurysm. *Eur J Vasc Endovasc Surg.* 2021;61(4):550-558.
25. Anaconda™ | Terumo aortic [Internet]. Accessed April 3, 2024. <https://terumoaortic.com/products/anaconda/>
26. Zenith® fenestrated AAA endovascular graft proximal body grafts | Cook Medical [Internet]. Accessed April 3, 2024. <https://www.cookmedical.com/products/5a186e6c-095a-4775-9a32-499edd4cad69/>
27. Anaconda™ (Custom Made) | Terumo aortic [Internet]. Accessed April 3, 2024. <https://terumoaortic.com/custom-solutions/anaconda-custom-made/>
28. Fenestrated TREO® | Terumo aortic [Internet]. Accessed April 3, 2024. <https://terumoaortic.com/custom-solutions/fenestrated-treo/>
29. Malina M, Resch T, Sonesson B. EVAR and complex anatomy: an update on fenestrated and branched stent grafts. *Scand J Surg.* 2008;97(2):195-204.
30. Matar A, Arnaoutakis DJ. Endovascular treatment of thoracoabdominal aortic aneurysms. *Semin Vasc Surg.* 2021;34(4):205-214.
31. Grandi A, Melloni A, D’Oria M, et al. Emergent endovascular treatment options for thoracoabdominal aortic aneurysm. *Semin Vasc Surg.* 2023;36(2):174-188.
32. Tsilimparis N, Fiorucci B, Debus ES, Rohlffs F, Kölbel T. Technical aspects of implanting the t-Branch off-the-shelf multi-branched stent-graft for thoracoabdominal aneurysms. *J Endovasc Ther.* 2017;24(3):397-404.
33. Makaloski V, Tsilimparis N, Rohlffs F, Spanos K, Debus ES, Kölbel T. Use of a steerable sheath for retrograde access to antegrade branches in branched stent-graft repair of complex aortic aneurysms. *J Endovasc Ther.* 2018;25(5):566-570.
34. Artivion E-side™ TAAA multibranch stent graft system [Internet]. Accessed April 3, 2024. <https://artivion.com/product/e-side-taaa/>
35. Zenith® t-Branch® thoracoabdominal endovascular graft | Cook Medical [Internet]. Accessed April 3, 2024. <https://www.cookmedical.eu/products/b50ed018-b896-4645-b24f-853a12dff2c/>
36. Papazoglou KO, Karkos CD, Giagtzidis IT, Kalogirou TE, Eliescu A. Spontaneous rupture of the visceral abdominal aorta: endovascular management using the periscope graft technique. *J Endovasc Ther.* 2012;19(4):558-562.
37. Kolvenbach RR, Yoshida R, Pinter L, Zhu Y, Lin F. Urgent endovascular treatment of thoraco-abdominal aneurysms using a sandwich technique and chimney grafts—a technical description. *Eur J Vasc Endovasc Surg.* 2011;41(1):54-60.
38. <https://fyra.io>. Snorkel/chimney versus fenestrated endovascular aneurysm repair: what works and when? [Internet]. Endovascular Today. Bryn Mawr Communications; Accessed November 26, 2023. <https://evtoday.com/articles/2016-mar/snorkelchimney-versus-fenestrated-evar-what-works-and-when>
39. Lee JT, Lee GK, Chandra V, Dalman RL. Comparison of fenestrated endografts and the snorkel/chimney technique. *J Vasc Surg.* 2014;60(4):849-857.
40. Moulakakis KG, Mylonas SN, Avgerinos E, et al. The chimney graft technique for preserving visceral vessels during endovascular treatment of aortic pathologies. *J Vasc Surg.* 2012;55(5):1497-1503.
41. Canonge J, Jayet J, Heim F, et al. Comprehensive review of physician modified aortic stent grafts: technical and clinical outcomes. *Eur J Vasc Endovasc Surg.* 2021;61(4):560-569.
42. Singh A, Mafeld S, Williams R, McCaslin J. Physician-modified fenestrated endografts for managing the ruptured or symptomatic aortic aneurysm: technique overview and clinical outcomes. *Vasc Endovascular Surg.* 2018;52(8):607-612.
43. Starnes BW, Tatum B, Singh N. Procedural and perioperative results in patients treated with fenestrated endovascular aneurysm repair planned by automated software in a physician-sponsored investigational device exemption trial of physician-modified endografts. *J Vasc Surg.* 2018;68(5):1297-1307.
44. Etz CD, Weigang E, Hartert M, et al. Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery†. *Eur J Cardiothorac Surg.* 2015;47(6):943-957.
45. Tran K, Mcfarland G, Sgroi M, Lee JT. Duplex ultrasound surveillance of renal branch grafts after fenestrated endovascular aneurysm repair. *J Vasc Surg.* 2019;70(4):1048-1055.
46. Sultan S, Concannon J, Veerasingam D, et al. Endovascular versus conventional open surgical repair for thoracoabdominal aortic aneurysms. *Cochrane Database Syst Rev.* 2022;4(4):CD012926.
47. Patel SR, Ormesher DC, Griffin R, Jackson RJ, Lip GYH, Vallabhaneni SR, UK-COMPASS Trial. Editor’s choice—comparison of open, standard, and complex endovascular aortic repair treatments for juxtarenal/short neck aneurysms: a systematic review and network meta-analysis. *Eur J Vasc Endovasc Surg.* 2022;63(5):696-706.
48. Zhou Y, Wang J, He H, et al. Comparative effectiveness of treatment modalities for complex aortic aneurysms: a network meta-analysis of observational studies. *Ann Vasc Surg.* 2023;93:369-386.
49. Zlatanovic P, Jovanovic A, Tripodi P, Davidovic L. Chimney vs. fenestrated endovascular vs. open repair for juxta/pararenal abdominal aortic aneurysms: systematic review and network meta-analysis of the medium-term results. *J Clin Med.* 2022;11(22):6779.
50. Zlatanovic P, Jovanovic A, Tripodi P, Davidovic L. Chimney versus fenestrated endovascular versus open repair for juxta/pararenal abdominal aortic aneurysms: systematic review and network meta-analysis of the short-term results. *World J Surg.* 2023;47(3):803-823.
51. Vallabhaneni SR, Patel SR, Campbell B, et al. Comparison of open surgery and endovascular techniques for juxtarenal and complex neck aortic aneurysms: the UK COMPLEX Aneurysm Study (UK-COMPASS)—peri-operative and midterm outcomes. *Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg.* 2024;67(4):540-553.
52. Haulon S, Steinmetz E, Feugier P, et al. Two-year results on real-world fenestrated or branched endovascular repair for complex aortic abdominal aneurysm in France. *J Endovasc Ther.* 2023;0(0):15266028231208653.
53. Katsargyris A, Marques de Marino P, Hasemaki N, et al. Editor’s choice—single centre midterm experience with primary fenestrated endovascular aortic aneurysm repair for short neck, juxtarenal,

and suprarenal aneurysms. *Eur J Vasc Endovasc Surg.* 2023;66(2):160-166.

54. Schreuder WMA, Dijkstra ML, von Meijenfeldt GCI, et al. Long-term survival and quality of life after fenestrated endovascular repair for complex abdominal aortic aneurysms. *Vasc Endovascular Surg.* 2023;57(6):555-563.
55. Dias-Neto M, Tenorio ER, Lima GBB, et al. Outcomes of low- and standard-profile fenestrated and branched stent grafts for treatment of complex abdominal and thoracoabdominal aortic aneurysms. *J Vasc Surg.* 2022;76(5):1160-1169.e1.
56. Dossabhoy SS, Sorondo SM, Tran K, Stern JR, Dalman RL, Lee JT. Reintervention does not affect long-term survival after fenestrated endovascular aneurysm repair. *J Vasc Surg.* 2022;76(5):1180-1188.e8.
57. van der Riet C, Schuurmann RCL, Verhoeven ELG, et al. Outcomes of Advanta V12 covered stents after fenestrated endovascular aneurysm repair. *J Endovasc Ther.* 2021;28(5):700-706.
58. Locham S, Dakour-Aridi H, Bhela J, Nejim B, Bhavana Challa A, Malas M. Thirty-day outcomes of fenestrated and chimney endovascular repair and open repair of juxtarenal, pararenal, and suprarenal abdominal aortic aneurysms using National Surgical Quality Initiative Program Database (2012-2016). *Vasc Endovascular Surg.* 2019;53(3):189-198.
59. O'Donnell TFX, Patel VI, Deery SE, et al. The state of complex endovascular abdominal aortic aneurysm repairs in the vascular quality initiative. *J Vasc Surg.* 2019;70(2):369-380.
60. Van Calster K, Bianchini A, Elias F, et al. Risk factors for early and late mortality after fenestrated and branched endovascular repair of complex aneurysms. *J Vasc Surg.* 2019;69(5):1342-1355.
61. Tinelli G, Crea MA, de Waure C, et al. A propensity-matched comparison of fenestrated endovascular aneurysm repair and open surgical repair of pararenal and paravisceral aortic aneurysms. *J Vasc Surg.* 2018;68(3):659-668.
62. Glebova NO, Selvarajah S, Orion KC, et al. Fenestrated endovascular repair of abdominal aortic aneurysms is associated with increased morbidity but comparable mortality with infrarenal endovascular aneurysm repair. *J Vasc Surg.* 2015;61(3):604-610.
63. Martin-Gonzalez T, Pinçon C, Maurel B, et al. Renal outcomes following fenestrated and branched endografting. *Eur J Vasc Endovasc Surg.* 2015;50(4):420-430.
64. Amiot S, Haulon S, Becquemin J-P, et al.; Association Universitaire de Recherche en Chirurgie Vasculaire. Fenestrated endovascular grafting: the French multicentre experience. *Eur J Vasc Endovasc Surg.* 2010;39(5):537-544.
65. Alfawaz AA, Dunphy KM, Abramowitz SD, et al. Parallel grafting should be considered as a viable alternative to open repair in high-risk patients with paravisceral aortic aneurysms. *Ann Vasc Surg.* 2021;74:237-245.
66. Touma J, Caradu C, Sylvestre R, et al.; Association Universitaire Pour la Recherche en Chirurgie (AURC) Collaborators. Multicentre experience with the chimney technique for abdominal aortic aneurysms in French University hospitals. *Eur J Vasc Endovasc Surg.* 2020;59(5):776-784.
67. Donas KP, Lee JT, Lachat M, Torsello G, Veith FJ, PERICLES Investigators. Collected world experience about the performance of the snorkel/chimney endovascular technique in the treatment of complex aortic pathologies: the PERICLES registry. *Ann Surg.* 2015;262(3):546-553; discussion 552-553.
68. Gouveia E Melo R, Fernández Prendes C, Caldeira D, et al. Systematic review and meta-analysis of physician modified endografts for treatment of thoraco-abdominal and complex abdominal aortic aneurysms. *Eur J Vasc Endovasc Surg.* 2022;64(2-3):188-199.
69. Chait J, Tenorio ER, Hofer JM, DeMartino RR, Oderich GS, Mendes BC. Five-year outcomes of physician-modified endografts for repair of complex abdominal and thoracoabdominal aortic aneurysms. *J Vasc Surg.* 2023;77(2):374-385.e4.
70. Chan H-L, Papazoglou DD, Jungi S, et al. Fenestrated physician-modified endografts for preservation of main and accessory renal arteries in juxtarenal aortic aneurysms. *J Clin Med.* 2023;12(14):4708.
71. Oderich GS, Ribeiro MS, Sandri GA, et al. Evolution from physician-modified to company-manufactured fenestrated-branched endografts to treat pararenal and thoracoabdominal aortic aneurysms. *J Vasc Surg.* 2019;70(1):31-42.e7.
72. Derycke L, Avril S, Millon A. Patient-specific numerical simulations of endovascular procedures in complex aortic pathologies: review and clinical perspectives. *J Clin Med.* 2023;12(3):766.