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Resumen

Propdsito: El analisis de composicién corporal sirve como indicador de ciertas condiciones
meédicas como el sindrome metabdlico, el cancer, la diabetes o las enfermedades cardiovasculares.
Tradicionalmente, estos anélisis se realizan mediante métodos antropométricos o herramientas
clinicas que proporcionan un resultado aproximado. Usando la familia de arquitecturas de
Aprendizaje Profundo U-NET, se realizd una segmentacion completamente automatica del tejido
adiposo abdominal visceral y subcutdneo. Se estudiaron estos resultados de segmentacién y se
compararon con el patron de oro generado por segmentacion manual de expertos. Materiales y
métodos: Se emplearon cuatro variaciones de la arquitectura de Aprendizaje Profundo de U-Net:
U-Net, R2U-Net, Attention U-Net y Attention R2U-Net. Estos métodos se entrenaron en un conjunto
de datos que consta de 554 ima&genes recopiladas entre 2015 y 2017 en el Hospital Universitario San
Ignacio y en el Instituto IDIME en Bogotd, Colombia. Esta base de imdgenes contiene anotaciones
para tres tejidos diferentes: grasa visceral, grasa subcutdnea y otros tejidos, generadas a través de
herramientas de segmentacion semiautomaticas. Resultados: El indice de Sgrensen-Dice se utiliza
como meétrica de evaluacion al comparar con los datos obtenidos del patron de oro, que consiste
en segmentaciones manuales realizadas por expertos. Se obtuvo que la arquitectura U-Net fue
la mas precisa en términos de segmentacion de la composicidn corporal general, con un puntaje
promedio de Dice de 93,0 %, seguida de cerca por la arquitectura Attention U-Net con un
puntaje promedio de Dice de 92,0 %. Conclusiones: Segun los resultados, se descubrid que las
arquitecturas U-Net y Attention U-Net son las méas adecuadas para el analisis de la composicion
corporal. Los resultados de segmentacidn producidos por estos métodos podrian usarse para
obtener métricas precisas y ayudar a los médicos a comprender la condicion fisica del paciente.

Summary

Purpose: Body composition analysis is a test that measures the proportion of various tissues
of a person’s body. It serves as an indicator for certain medical conditions such as metabolic
syndrome, cancer, diabetes, or cardiovascular disease. Traditionally, these analyses are done using
anthropometric methods or clinical tools that provide an approximated result. Using the family of
U-NET Deep Learning architectures, we perform a fully automatic segmentation of visceral and
subcutaneous abdominal adipose tissues. We study these segmentation results and compare them
against semiautomatic and manual generated ground truths. Materials and methods: \We employ
several variations of the U-Net Deep Learning architecture: U-Net, R2U-Net, Attention U-Net, and
Attention R2U-Net. These methods were trained on a dataset, which consists of 554 images from the
Hospital Universitario San Ignacio and IDIME Institute in Bogota, Colombia, collected from 2015 to
2017. This dataset contains annotations for three different tissues: visceral fat, subcutaneous fat and
other tissue generated through semiautomatic segmentation tools. Results: Sorensen-Dice index
is used as the evaluation metric against the ground truth which consists of manual segmentations
performed by experts. We obtained that the U-Net architecture was the most accurate in terms of
overall body composition segmentation, with a mean Dice score of 93.0%, followed closely by the
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Attention U-Net architecture. Conclusions: \We found that the U-Net and Attention U-Net architectures are more suited for
body composition analysis. The segmentation results produced by these methods could be used to obtain precise metrics
and help physicians understand the patient’s physical condition.

Introduccién

El estudio de la composicion corporal es importante en la medida en
que permite obtener un indicador para detectar diversas condiciones de
salud. Mediante el analisis de la cantidad y la distribucion de diferentes
tipos de tejidos en el cuerpo, en particular tejido adiposo y muscular,
es posible determinar la probabilidad de desarrollar ciertas condicio-
nes médicas, como las enfermedades cardiovasculares, la diabetes, la
enfermedad renal crénica, los trastornos musculoesqueléticos (1), el
cancer (2) o el sindrome metabolico (3).

A pesar de los avances en la medicina moderna, los métodos de
analisis de composicion corporal contemporaneos estan fuertemente
basados en métodos antropométricos, como el calculo del indice de
masa corporal (IMC), el indice de cintura-cadera (WHR, por sus siglas
en inglés) o el porcentaje de grasa corporal (BFP, por sus siglas en
inglés). Para algunos de estos indices, como el IMC, se ha descubierto
una relacion entre los mismos y el incremento de riesgo de muerte.
Dicho incremento ademas afecta especialmente a paises con niveles
sociodemograficos bajos y medios (1).

Una manera de aumentar la precision de estos métodos de analisis de
composicion corporal consiste en medir la proporcion de la distribucion
de tejido adiposo para cada paciente. El calculo de estos indicadores
ha sido recientemente incorporado en herramientas clinicas y a través
de métodos de computacion grafica y aproximaciones basadas en
segmentacion de tejidos, la medicion de la proporcion de estos tejidos
se ha hecho mas precisa.

Mas recientemente se han propuesto nuevas alternativas auto-
maticas y semiautomaticas para la cuantificacion de tejido adiposo
y muscular, usando en particular métodos de Aprendizaje Profundo.
Las arquitecturas U-Net (4) han ganado popularidad para segmentar
semanticamente imagenes del torso; muchos de estos avances todavia
requieren validacion de expertos, pues son susceptibles de aparicion
de sesgos y requieren atn trabajo para volverse alternativas confiables
completamente automatizadas. Los sesgos mas importantes en este tipo
de trabajos provienen de los instrumentos usados y los operadores, por
ejemplo para la obtencion de las tomografias (TAC), la seleccion de
conjuntos de datos no-representativos, el uso de datos de entrenamiento,
e imagenes con problemas de anotacion.

Para abordar dicha brecha, este estudio busca probar en detalle un
subconjunto de las arquitecturas de Aprendizaje Profundo U-Net usando
como entrada un grupo de imagenes mixtas para entrenar, comparar
y evaluar el desempefio de cada una al segmentar tejido abdominal
adiposo y tejido muscular.

Estado del arte

Trabajos previos han utilizado umbralizacion y operaciones de
morfologia basica para la deteccion de diferentes tipos de tejidos. Con
el tiempo, varios estudios han incorporado también la cuantificacion
de tejido corporal para obtener informacion acerca de las condiciones
de salud que un paciente pueda tener. Los avances mas recientes han
refinado las segmentaciones usando técnicas mas avanzadas como
crecimiento de regiones dinamico o modelos de contorno activo (5):
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algoritmos basados en imagenes para detectar las regiones estrechas
que conectan los tejidos subcutaneo y visceral en el tronco (6) o al-
goritmos basados en analisis morfoldgico a partir de umbralizaciones
sobre TAC para calcular los volumenes de las regiones que contienen
grasa visceral (7).

Una revision de trabajos previos revela que los métodos basados
en Aprendizaje Profundo se aproximan bastante al desempefio de
expertos humanos para la segmentacion. Algunos ejemplos en el area
han empleado redes neuronales convolucionales (CNN, por sus siglas
en inglés) para clasificar tejido adiposo visceral (VAT, por sus siglas
en inglés) y tejido adiposo subcutaneo (SAT, por sus siglas en inglés)
(8) o redes convolucionales neuronales automatizadas (A-CNN, por
siglas en inglés) con el mismo fin (9).

Entre los métodos de Aprendizaje Profundo se destacan las arquitec-
turas basadas en redes neuronales convolucionales profundas (RNCP).
En particular, la familia de arquitecturas U-Net ha ganado prevalencia.
La arquitectura original U-Net fue desarrollada como una RNCP modi-
ficada cuya aplicacion se demostré inicialmente para segmentacion de
células (4). Posteriormente, otros trabajos han demostrado el alcance
de esta arquitectura. Versiones extendidas de la arquitectura que usan
modulos residuales y de atencion han tenido éxito en la segmentacion
del misculo paravertebral en TAC abdominales (10). Otras adaptaciones
que emplean una arquitectura denominada U-Net densa han servido
para detectar grasa, huesos y musculos en RM a través de un flujo de
trabajo, o “pipeline”, de segmentacion (11).

También se han desarrollado variaciones del modelo de arquitectura
U-Net en busca de mejorar su eficacia. Se destacan las arquitecturas
RU-Net y R2U-Net que fueron presentadas y probadas en conjuntos de
datos de prueba para segmentar vasos sanguineos en la retina, cancer
de la piel y lesiones pulmonares (12). Otra variacion es la arquitectura
Attention U-Net, probada en la segmentacion de multiples tejidos en TAC
abdominales (13). Finalmente, esté la arquitectura Attention R2U-Net,
que ha sido probada en los mismos conjuntos de datos que la RU-Net y
laR2U-Net (14). Mas adelante se explican con detalle estas arquitecturas.

Las U-Net se han usado para analisis de composicion corporal en
TAC para segmentar misculo y SAT. En particular, esta arquitectura
se ha usado para segmentar VAT, musculo y los 6rganos abdominales
a la altura de la vértebra L3 (15). La U-Net también se ha usado para
segmentar, ademas de VAT, tejido intermuscular adiposo a la misma
altura (16) y contenido mixto intrapélvico a la altura supraacetabular
(17). Finalmente, se han utilizado otras variaciones de la arquitectura,
como la U-Net 3D multirresolucion, para generar una volumetria de
la composicion corporal de tejidos en TAC a partir de un conjunto de
datos anotados (18).

Todos estos trabajos sugieren que las arquitecturas basadas en
U-Net pueden servir como base para la construcciéon de un método
completamente automatizado de segmentacion y cuantificacion de
tejido adiposo y muscular. En ese sentido, este trabajo busca explorar
el conjunto de las arquitecturas de Aprendizaje Profundo U-Net, R2U-
Net, Attention U-Net y Attention R2U-Net, para estudiar su desempefio
y determinar cudl de ellas es la mas indicada para resolver el problema
de segmentacion de VAT y SAT en el analisis de composicion corporal.

Estudio comparativo de modelos de aprendizaje profundo para segmentar tejido adiposo abdominal en tomografia axial computarizada
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Métodos y materiales

Imdgenes

El conjunto de datos empleado consta de 513 imagenes abdominales
de TAC tomadas por el Hospital Universitario San Ignacio y el instituto
IDIME en Bogota, Colombia. Estas imagenes fueron obtenidas del
2015 al 2017 y cada una corresponde a un paciente diferente. De estas
imagenes, 185 pertenecen a pacientes de sexo masculino en un rango
de edad de entre 17 y 71 aflos, con una media de edad 48,1 afios; 328
de las imagenes pertenecen a pacientes de sexo femenino en un rango
de edad de 17 a 87 afos, con una media de edad de 46,6 afios. Las
iméagenes tienen una resolucion de 0,482x0,482 a 0,953%0,953 mm?,
con tamafio matricial de 512x512 y espaciado entre los cortes de entre
1 y 6 mm. Un radidlogo selecciond un corte axial para cada paciente
de forma manual, a la altura de la cuarta vértebra lumbar, con base en
la definicion de exceso de grasa visceral; el corte poseia un area mayor
a 100 cm? de grasa visceral medida en este nivel. La variedad de la
poblacion y el uso de imagenes provenientes de dos hospitales permiten
mitigar algunos sesgos propios de los conjuntos de datos.

Patron de oro

Para generar el patron de oro, o verdad terreno, del tejido adiposo
abdominal, tanto subcutaneo como visceral, se usé un conjunto de 41
imagenes adicionales: 25 de hombres y 16 de mujeres. A partir de las
segmentaciones manuales de tres expertos se cred un primer conjunto
de validacion con la interseccion de las areas identificadas por los mis-
mos en cada imagen. Posteriormente, se generd un segundo conjunto
de validacion a partir de la revision de las intersecciones por un cuarto
experto, y la segmentacion resultante fue definida por consenso de los
cuatro radiologos. En este texto se menciona al primer conjunto como
interseccion y al segundo como consenso, respectivamente. La confor-
macion del patron de oro usando esta estrategia permite también mitigar
los sesgos cognitivos presentes en las anotaciones de los conjuntos de
datos entrenamiento y validacion.

Arquitecturas de Aprendizaje Profundo U-Net

En este trabajo se evaluo el desempefio de cuatro arquitecturas
de RNCP: U-Net, R2U-Net, Attention U-Net y Attention R2U-Net.
Tipicamente las RNCP se especializan en la identificacion de patrones
en imagenes y su arquitectura basica esta dividida en diferentes capas
de procesamiento: convolucion, agrupamiento, activacion y comple-
tamente conectada.

La capa de convolucion es la mas importante en este tipo de ar-
quitecturas y estd basada en una operacion comtnmente utilizada en
procesamiento de imagenes llamada convolucién, la cual consiste en
tomar pequefias partes de una imagen (usando una ventana denominada
filtro o kernel de pixeles) y combinarlas con la imagen original para
resaltar ciertas caracteristicas. Esto se hace repetidamente en toda la
imagen para producir una nueva imagen filtrada que muestra como las
caracteristicas se relacionan con diferentes partes de la imagen original.
En el aprendizaje automatico, las redes neuronales convolucionales
utilizan este proceso para realizar tareas como la segmentacion y la
clasificacion de objetos.
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La capa de agrupamiento reduce la resolucion de la imagen
(submuestreo) al tiempo que preserva caracteristicas. La capa de ac-
tivacion introduce no-linearidad en la arquitectura y normalmente se
implementa usando una Unidad Lineal Rectificada (ReLU) que elimina
los valores negativos de la imagen filtrada para reemplazarlos por cero.
Finalmente, la capa completamente conectada recibe como entrada
las salidas de las capas anteriores y determina la probabilidad de cada
clase o etiqueta en la imagen; en el caso particular de las escanografias
abdominales, la probabilidad de que un pixel pertenezca a las clases
VAT, SAT, a otros tipos de tejidos o al fondo de la imagen.

La arquitectura U-Net se basa en la arquitectura de la RNCP, pero
aflade operadores de interpolacion para incrementar la resolucion de las
imagenes (supermuestreo) y para extraer caracteristicas de alto nivel;
ademas de no emplear capas completamente conectadas. Se denomina
U-Net debido a su forma en U, que consiste en un camino que se contrae
o que desciende (red de codificacion) y un camino que se expande o
que asciende (red de decodificacion). La arquitectura busca aprender
diferentes filtros a lo largo de ambas redes para extraer las caracteristicas
de laimagen que le permitan determinar qué pixeles pertenecen a alguna
de las clases usadas para entrenar (SAT, VAT, otros tejidos y fondo).

Lafigura 1 ilustra las capas presentes en la arquitectura, incluyendo
la red de codificacion (segmento descendiente) y la red de decodifica-
cion (segmento ascendente). La red de codificacion de la arquitectura
U-Net consiste en cuatro bloques de submuestreo compuestos por las
siguientes capas: dos convoluciones con kernels de 3x3 con una fun-
cion de activacion ReLU, cuya salida es un mapa de caracteristicas, y
una operacion de agrupamiento maximo de 2x2 con una longitud de
paso 2 para submuestreo. La red de decodificacion esta formada por
cuatro bloques de supermuestreo con las siguientes capas: una capa de
convolucion transpuesta para supermuestreo del mapa de caracteris-
ticas, una concatenacion del mapa de caracteristicas que proviene del
correspondiente bloque de la red de codificacion (ubicado a la misma
altura en el segmento descendiente de la U) y dos convoluciones de
3x3, seguidas de una ReLU. El bloque inferior que une las dos redes
(ubicado en la base de la U) consiste en dos convoluciones con una
funcion ReLU de activacion. El bloque final de la red decodificadora
aplica una convolucion con un kernel de 1x1 para producir el mapa de
segmentacion final con el numero de clases indicado (4).

La arquitectura R2U-Net esta basada en la arquitectura Recurrent
U-Net o RU-Net. La arquitectura RU-Net es una version modificada
de la arquitectura U-Net que usa capas convolucionales recurrentes
hacia adelante (RCL) en lugar de capas convolucionales tradicionales.
A través de RCL, una RU-Net permite una acumulacién mas efectiva
de caracteristicas entre las dos subredes. Una R2U-Net es, justamen-
te, una variante de la RU-Net que usa unidades residuales junto con
RCL para transmitir salidas a las capas posteriores de la red y evitar la
degradacion de la eficiencia al momento de mantener caracteristicas
(12). La arquitectura R2U-Net se ilustra en la figura 2.

La arquitectura Attention U-Net esta también basada en la U-Net,
pero incorpora varias compuertas de atencion (AG) para filtrar las ca-
racteristicas propagadas por las conexiones de salto de la arquitectura
original. Esto ayuda a progresivamente eliminar segmentaciones en
regiones asociadas con el fondo de la imagen (13).

Finalmente, la Gltima arquitectura estudiada fue la Attention R2U-
Net. Esta arquitectura mezcla las unidades residuales con RCL de la
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R2U-Net con las AG de la Attention U-Net (14). Tanto la Attention
U-Net como la Attention R2U-Net se ilustran en las figuras 1 y 2,
respectivamente.

En resumen, la arquitectura U-Net se basa en el calculo de sucesivos
filtros durante la etapa de submuestreo con el fin de reducir la imagen
para resaltar a través de convoluciones, y a medida que se avanza en
la etapa de aumento de muestreo, estas caracteristicas se usan para
ayudarle a la red a detectar los diferentes tipos de tejidos. Las varian-
tes que se exploraron afiaden etapas que permiten que la red intente
aprender a través de diferentes mecanismos (AG, RCL y similares) en
qué zonas de la imagen deberia concentrarse para mejorar la calidad
de la segmentacion.

[] Concatenacién
=) Agrupamiento max 2x2
= Conv 3x3, ReLU
=+ Conv 1x1

Deconv 3x3

Conexién de salto
Compuerta de atencién*

Seial de compuerta*

Figura 1. Arquitecturas U-Net y Attention U-Net. Los componentes marca-
dos con (*) corresponden a la version Attention de la arquitectura.

P
J D gl | ‘j)l{(‘,(m\' Residual con ReLU
P PDecony Residual con ReLU
N [] Concatenacion
= Agrupamiento max. 2x2
= Conv 3x3, ReLU
Deconv 3x3, ReLU
= Conv Ix1

Conexién de salto

Figura 2. Arquitecturas R2U-Net y Attention R2U-Net. Los componentes
marcados con (*) corresponden a la version Attention de la arquitectura.

Medicion del desempefio
Para medir el desempefio, se us6 como métrica principal el indice
de Dice (DSC):

2|A| n |B|

DSC(A, B) =
]+ |B]
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Donde A4 esta dado por la mascara de segmentacion de la verdad
terreno a través del patron de oro, B es la mascara de segmentacion
generada para cada clase por cada una de las arquitecturas; 4 y B son
el niimero de elementos positivos en cada mascara. Para deducir el
indice de Dice total, se calculo el puntaje para cada clase y luego se
obtuvo el promedio.

Durante el entrenamiento de las redes se mide la discrepancia
entre las predicciones del modelo y los valores reales a través de una
funcion de pérdida. El objetivo de cada iteracion es que se minimice la
pérdida calculada a través de la respectiva funcion para la segmentacion.
En este caso se usaron, en particular, dos funciones para calcular la
funcion de pérdida total: la funcioén de pérdida enfocada y la funcion
de pérdida Dice.

La funcion de pérdida enfocada FL(P, ) estd definida como:

FL(p ) =— OL,(I —pc)ylog( C)
psiy=c

P = 1 — p de lo contrario

Donde P, es la probabilidad estimada para la clase ¢ por el modelo,
o es el factor de peso y v es el factor de enfoque. La pérdida total para
todas las clases, con C como el niamero total de clases, es calculada asi:

o
Pérdida Total Enfocada = z —u(l —pc)ylog( C)

c=1

Mientras tanto, la funcion de pérdida de Dice estd basada en el
indice de Dice y se define como:

c
Pérdida Dice(f;\,y) = Z 1 —DSC()?C,}JC)

c=1

Curva ROC

Adicionalmente, para medir el desempefio se us6 la curva de ca-
racteristica operativa del receptor (ROC, por sus siglas en inglés) para
cada clase de manera independiente. La curva ROC se construye a partir
de la proporcion de verdaderos positivos contra la proporcion de falsos
positivos. La curva ROC es, en ultimas, una curva de probabilidad, y
calcular el area bajo la curva (AUC, por sus siglas en inglés) permite
entender qué tan bueno es el modelo prediciendo o segmentando una
clase contra todas las demas. Entre mas cercano el valor de AUC esté
a | para una clase en particular, mejor sera la arquitectura prediciendo
dicha clase (100 % de sus predicciones son correctas), e inversamente,
entre mas cercano esté el valor del AUC a 0, peor sera el modelo.

Estudio comparativo de modelos de aprendizaje profundo para segmentar tejido adiposo abdominal en tomografia axial computarizada
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Conjunto de entrenamiento

Uno de los desafios méas importantes al momento de entrenar mo-
delos de redes neuronales consiste en la capacidad de generar conjuntos
de datos de entrenamiento suficientemente grandes para garantizar que
la red sea capaz de generalizar el aprendizaje a otras imagenes sin pro-
vocar sobreajuste. La cantidad de segmentaciones manuales dependera
siempre de los expertos; sin embargo, en aras de facilitar e incrementar
la cantidad de imagenes utilizadas, se propone una estrategia diferente
complementaria al uso del patrén del oro.

Para aumentar el nimero de imagenes segmentadas, se usé el
software CAAVAT (Computer Assisted Analysis of Visceral Adipose
Tissue). CAVAAT es una herramienta que permite estimar la cantidad
de tejido adiposo y subcutaneo en TAC. Esta herramienta realiza una
segmentacion a través de una umbralizacion sobre la imagen del cuerpo
del paciente con un intervalo de =500, 100 UH, y luego aisla el tejido
adiposo a través de una umbralizacion con intervalo de —150, 50 UH.
Finalmente, un contorno activo inicial se adhiere al cuerpo y un segundo
contorno se adhiere al perineo para ayudar a diferenciar VAT y SAT.
CAAVAT segmenta la imagen en cuatro clases de tejido: VAT, SAT,
otros tejidos y fondo (figura 3). Se us6 CAAVAT para segmentar las
513 imagenes presentes en el conjunto de datos para medir la precision
de las arquitecturas.

Se valido la eficiencia de CAAVAT realizando una segmentacion de
las 41 imagenes del patrén de oro y comparandola contra los resultados
de los expertos. CAAVAT obtuvo una eficiencia levemente inferior a la
de los expertos en segmentacion manual, como se muestra en la tabla
1, cuando se uso el indice de DICE para comparar la segmentacion
individual de cada experto con relacion al consenso en el patréon de oro.

Tabla 1. Comparacién de desempeiio de expertos y
CAAVAT contra el consenso en el patrén de oro

Segmentacion Puntaje DICE
Experto 1 0,852 +- 0,002
Experto 2 0,858 +- 0,002
Experto 3 0,866 +- 0,002
CAAVAT 0,834 +- 0,002

Imagen original

El objetivo de usar CAAVAT como experto adicional permite
entrenar un modelo de Aprendizaje Profundo con mayor capacidad
de generalizacion que no dependa inicamente de una estrategia de
aumento de datos a partir de transformaciones sobre un conjunto re-
ducido de datos. En este caso, CAAVAT permiti a entrenar y validar
los modelos con 513 imagenes en total, en lugar de 41 que hacian parte
del patrén de oro.

Aumento de datos

El aumento de datos es una técnica esencial para el entrenamiento de
redes basadas en Aprendizaje Profundo, incluyendo la familia de arqui-
tecturas U-Net estudiadas. Aumentar datos permite generalizar mejor y
con mas diversos ejemplos para incrementar la robustez de estas. Se hizo
un aumento del 40 % de los datos de entrenamiento usando operaciones
de redimensionamiento aleatorio, rotaciones aleatorias, recorte central,
desplazamiento de intervalo y distorsion de color.

Evaluacion y resultados
Para el entrenamiento de las arquitecturas, se dividio el conjunto
de datos de la siguiente manera:

» Un conjunto de entrenamiento de 353 imagenes, usadas para en-
trenar a la red neuronal tras cada época de entrenamiento.

 Un conjunto de validacion de 58 imagenes, usadas para validar la
precision de cada época de entrenamiento.

» Un conjunto de prueba de 102 imagenes, usadas para ajustar los
hiperparametros de la red.

Adicional a estos conjuntos, se emplearon las 41 imagenes del
patron de oro para determinar el desempetio final de la red.

Todos los modelos fueron entrenados durante 200 épocas con una
tasa de aprendizaje de 2x104 y con un tamatfio del lote de entrenamiento
de 4. Adicionalmente, se empleo el optimizador de gradiente estocastico
descendiente con una tasa de decaimiento de f1 = 0,5y f2 = 0,999.

El objetivo del entrenamiento es reducir la funcion de pérdida, que
mide la diferencia entre la prediccion y y el correspondiente mapa de
etiquetas y para una entrada x. La prediccion y es un tensor de tamafio
R"MWXC con altura H, ancho W y C clases.

Figura 3. Resultados de la segmentacion de tejidos usando CAAVAT: a) VAT, b) SAT, c) otros tejidos y d) union de todas las segmentaciones.
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Para cada pixel de la entrada x, se obtiene un vector de estimacion
de probabilidad de clase. Para comparar la salida y con el respectivo
mapa de etiquetas, las clases de segmentacion son codificadas usando
One-hot para asimilar las dimensiones R®*%*¢ de la prediccion. Para la
evaluacion final con el conjunto de prueba, el mejor modelo es selec-
cionado basado en el desempefio obtenido en el conjunto de validacion.

Las tablas 2 y 3 muestran los resultados de la segmentacion con cada
arquitectura para las cuatro clases, asi como el promedio por clase. Los
resultados muestran que la arquitectura U-Net obtuvo el mejor valor
de indice de Dice para VAT/SAT y otros tejidos, seguida muy de cerca
por la arquitectura Attention U-Net. Ambas tuvieron un desempefio
similar sobre todas las clases. Para analizar en mayor detalle, se obtuvo
el indice Dice para cada clase en tres escenarios de prueba.

Para la tarea de analisis de composicion corporal, las arquitecturas
U-Net y Attention U-Net tuvieron un mejor desempefio para segmentar

ambos tipos de tejido adiposo. En todos los casos, la clase mas dificil
para segmentar fue el VAT debido a la alta variabilidad de ubicacion y
tamaifio por cada paciente, asi como la presencia de otros tejidos mus-
culares y de contenido intestinal en las regiones aledafias o internas.
Esta dificultad se hizo bastante notoria en las arquitecturas U-Net que
emplean RCL con unidades residuales.

Con relacion a otros trabajos, la tabla 4 muestra los puntajes de
referencia de los estudios (15-18). Si bien los puntajes obtenidos estan
por debajo de las referencias, la mayor limitacion actual consiste en
el conjunto de imagenes de partida y, si bien los resultados para SAT
se acercan, la segmentacion de VAT tiene mucho menor puntaje que
el obtenido por Dabiri et al (16). En términos del nimero de pacientes
empleados y el puntaje de Dice para SAT, los resultados obtenidos se
acercan en parametros y resultados a los de Hemke et al. (17).

Tabla 2. indices Dice obtenidos para la sesgmentacién de VAT y SAT en el conjunto de datos para cada

arquitectura con relacién a la interseccién

Arquitectura / clase Fondo Otros tejidos VAT SAT Promedio
U-Net 0,99 +- 0,00 0,92 +- 0,02 0,84 +- 0,04 0,95 +- 0,01 0,93 +- 0,02
Attention U-Net 0,99 +- 0,00 0,91 +- 0,02 0,83 +- 0,05 0,94 +- 0,01 0,92 +- 0,02
R2U-Net 0,92 +- 0,02 0,72 +- 0,06 0,66 +- 0,11 0,55 +- 0,14 0,71+- 0,08
Attention R2U-Net 0,885 +- 0,044 0,85 +- 0,04 0,01 +- 0,14 0,38 +- 0,14 0,53 +- 0,06

Tabla 3. indices Dice obtenidos para la segmentacién de VAT y SAT en el conjunto de datos para cada

arquitectura con relacién al consenso

Arquitectura / clase Fondo Otros tejidos VAT SAT Promedio
U-Net 0,99 +- 0,00 0,92 +- 0,02 0,84 +- 0,05 0,95 +- 0,01 0,93 +- 0,02
R2U-Net 0,92 +- 0,02 0,72 +- 0,06 0,66 +- 0,11 0,56 +- 0,16 0,72 +- 0,08
Attention U-Net 0,99 +- 0,00 0,91 +- 0,02 0,83 +- 0,05 0,94 +- 0,01 0,92 +- 0,02
Attention R2U-Net 0,88 +- 0,04 0,85 +- 0,04 0,02 +- 0,01 0,38 +- 0,14 0,53 +- 0,06

Tabla 4. Comparacién de resultados de puntaje Dice para la segmentacion de VAT y SAT de cuatro estudios de

referencia y el mejor resultado del trabajo actual

Autores Numero de pacientes Puntaje Dice para VAT Puntaje DICE para SAT
Weston et al. (15) 2.369 - 0,98
Dabiri et al. (16) 2.529 0,98 0,98
Hemke et al. (17) 200 - 0,95
Koitka et al. (18) 50 - 0,99
Estudio actual 513 0,84 0,95
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La figura 4 muestra algunos resultados cualitativos del analisis de
composicion corporal en comparacion con la segmentacion con rela-
cion al consenso. Para el caso de las arquitecturas U-Net y Attention
U-Net, las clases segmentadas tienen aspectos similares con relacion
a la verdad terrena para la interseccion y el consenso. En el caso de
la arquitectura R2U-Net, esta obtuvo resultados menos consistentes

Imagen Original

R2U-NET Attention U-NET U-NET Consenso

Attention R2U-NET

y cualitativamente tendid a equivocarse mas en el abdomen superior,
alterando la segmentacion de VAT y SAT en dichas regiones. Finalmen-
te, la arquitectura Attention R2U-Net tuvo un desempefio muy bajo,
ignorando en muchos casos las fronteras de los tejidos y clasificando
la mayoria de las regiones de la imagen como VAT.

Figura 4. Resultados cualitativos de la segmentacion en diferentes pacientes usando las distintas arquitecturas.
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Para entender mejor el bajo desempefio de las arquitecturas R2U-
Net y Attention R2U-Net, se hizo una validacion con tnicamente dos
clases: otros tejidos y tejido adiposo; es decir, VAT y SAT conjunta-
mente. Se us6 como punto de comparacion la arquitectura U-Net con el
mismo numero de clases. En la tabla 5 se resumen los resultados para
cada segmentacion calculados con la media y la desviacion estandar
del indice de Dice para cada arquitectura. En ambos casos el indice
Dice obtenido con R2U-Net y Attention R2U-Net tuvo un aumento
considerable, en el caso de la arquitectura Attention R2U-Net, esta se
acerco bastante al desempefio de U-Net, mientras que R2U-Net apenas
si tuvo variacion.

Tabla 5. indices Dice obtenidos en el conjunto de
datos para otros tejidos y tejido adiposo para cada
arquitectura

Curvas ROC para arquitectura U-NET
Una clase vs.las demas

0,8

4
o

Proporcion de verdaderos POsitivos
S
P

0,2
. . Tejido
Arquitectura / clase Otros tejidos i
adiposo

—— Curva ROC para Otros tejidos (AUC = 1,00)

U-Net 0,91 +- 0,03 0,92 +- 0,15 8% —— Curva ROC para VAT (AUC = 0,97)

—— Curva ROC para SAT (AUC = 0,99)
R2U-Net 0,71 +- 0,07 0,62 +- 0,08 AT P PP = = =

Proporcién de falsos positivos
Attention R2U-Net 0,91 +- 0,03 0,90 +- 0,04 L )

Curva ROC

Para calcular el AUC de cada una de las arquitecturas, se trazé la
curva ROC por cada una de las clases contra las demas clases existen-
tes, analizando el problema de la segmentacion para cada tejido como
si se tratara de multiples clasificaciones binarias, usando el consenso
como verdad terrena para calcular la proporcion de verdaderos posi-
tivos y falsos positivos para cada arquitectura.

Las figuras 5 y 6 muestran los resultados de AUC para las arqui-
tecturas U-Net y Attention U-Net. Ambas arquitecturas muestran un
valor de AUC aproximadamente de 1,00 para las clases asociadas a
otros tejidos y de 0,99 para las clases asociadas a SAT. Con relacion
a la clase asociada a VAT, la arquitectura U-Net tiene un valor leve-
mente menor (0,97) que la arquitectura Attention U-Net (0,98). Estos
valores indican que ambas arquitecturas son capaces de clasificar
correctamente hasta un 97 % y 98 % de pixeles pertenecientes al
tejido adiposo abdominal de cada paciente.

Por otro lado, de acuerdo con las figuras 7 y 8, las arquitecturas
R2U-Net y Attention R2U-Net tienen valores de AUC mas bajos. El
valor de AUC asociado a otros tejidos es menor que en las arquitectu-
ras U-Net (0,99 y 0,97). Los valores de AUC asociados a VAT son si-
milares (0,96 y 0,98); sin embargo, el valor de SAT presenta problemas
importantes: para la arquitectura R2U-Net es de cerca de 0,92 y para
la arquitectura Attention R2U-Net es de 0,35. Si se examinan todos
los valores tomando en cuenta el indice de Dice, pareciera indicar que
estas arquitecturas son capaces de aislar al menos una parte del VAT,
aunque no corresponda a la region total. En particular, la arquitectura
Attention R2U-Net tiene problemas importantes con la deteccion de
SAT, como confirma el andlisis cualitativo de las segmentaciones.
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Figura 5. Curva ROC para la arquitectura U-Net para las clases Otros tejidos,
VAT y SAT, junto con su respectivo de AUC.
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Figura 6. Curva ROC para la arquitectura Attention U-Net para las clases
Otros tejidos, VAT y SAT, junto con su respectivo de AUC.
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Curvas ROC para arquitectura R2U-NET
Una clase vs. las demas
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Figura 7. Curva ROC para la arquitectura R2U-Net para las clases Otros
tejidos, VAT y SAT, junto con su respectivo de AUC.
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Figura 8. Curva ROC para la arquitectura Attention R2U-Net para las clases
Otros tejidos, VAT y SAT, junto con su respectivo de AUC.
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Discusion

En este articulo se describe como se entrend, se probd y se estudid
un subconjunto de arquitecturas de Aprendizaje Profundo basadas en
U-Net con el proposito de realizar analisis de composicion corporal.
Estas arquitecturas funcionan bastante bien para la segmentacion de
las regiones asociadas a VAT y a SAT. En particular, la arquitectura
U-Net y Attention U-Net obtuvieron el mejor desempefio para las
clases individuales con los escenarios de prueba, demostrando su
relevancia como uno de los métodos de segmentacion semantica a la
vanguardia del area de procesamiento de imagenes médicas. Entender
y explorar en mayor detalle este par de arquitecturas podria resultar
en aun mejores resultados para los analisis de composicion corporal.

El bajo desempefio de las arquitecturas con unidades residuales y
RCL sigue siendo sorprendente. Aunque las implementaciones origi-
nales aplicadas a la segmentacion de lesiones mostraron el potencial
de las arquitecturas R2U-Net y Attention R2U-Net, su eficacia es
cuestionable para problemas con multiples clases desbalanceadas. Sin
embargo, se logrd incrementar considerablemente la eficiencia de la
Attention R2U-Net cuando se redujo el problema a una clasificacion
con dos clases mas balanceada: tejido adiposo y otros tejidos, sin
obtener una mejora sustancial en el desempefio de la arquitectura
R2U-Net. Esto lleva a pensar que estas ltimas arquitecturas pueden
funcionar mejor en otros tipos de problemas, particularmente, seg-
mentacion binaria de tejidos con clases mejor balanceadas.

Los resultados aqui documentados muestran que las arquitecturas
basadas en U-Net sin unidades residuales ni RCL pueden servir de
base para la implementacién de métodos automaticos de segmentacion
que sean capaces de aliviar la dependencia de calculos exclusivamente
antropométricos para analizar los tejidos de un paciente y detectar
tempranamente sus condiciones de salud. Estas arquitecturas son in-
valuables y pueden apoyar enormemente el trabajo de los expertos y
el desarrollo de herramientas completamente automaticas en el campo.

Con relacion a la comparacion con otros estudios similares (tabla
4), los resultados sefialan la necesidad de ampliar el conjunto de en-
trenamiento y aumentar la mayor variedad en términos de tiempo de
obtencion e instrumentos, para lograr una mejor generalizacion de las
arquitecturas. Si bien este conjunto de datos mitiga los sesgos asocia-
dos a las arquitecturas, son necesarios mas datos de entrenamiento.
Adicionalmente, el enfoque en segmentacion de SAT ademas de VAT
afiade una capa de complejidad que solo otros estudios abordan direc-
tamente, o emplean directamente clases diferentes, concentrandose
particularmente en la segmentacion de VAT.

A futuro, los autores consideran importante continuar recopi-
lando escanografias abdominales para enriquecer los conjuntos de
entrenamiento, haciendo énfasis en obtener variedad en términos de
la obtencion: maquinas, operadores y poblacion. Del mismo modo,
prevén la continuacion del uso de CAVAAT como herramienta de ano-
tacion para facilitar el trabajo de los expertos al momento de generar
patrones de oro que permitan probar y validar los entrenamientos de
las arquitecturas. Finalmente, la segmentacion del musculo paraver-
tebral es otro de los desafios por abordar, que permitira mejorar los
resultados para discriminar los tejidos de interés para estas arquitec-
turas con mayor precision.
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