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Resumen
Propósito: El análisis de composición corporal sirve como indicador de ciertas condiciones 
médicas como el síndrome metabólico, el cáncer, la diabetes o las enfermedades cardiovasculares. 
Tradicionalmente, estos análisis se realizan mediante métodos antropométricos o herramientas 
clínicas que proporcionan un resultado aproximado. Usando la familia de arquitecturas de 
Aprendizaje Profundo U-NET, se realizó una segmentación completamente automática del tejido 
adiposo abdominal visceral y subcutáneo. Se estudiaron estos resultados de segmentación y se 
compararon con el patrón de oro generado por segmentación manual de expertos. Materiales y 
métodos: Se emplearon cuatro variaciones de la arquitectura de Aprendizaje Profundo de U-Net: 
U-Net, R2U-Net, Attention U-Net y Attention R2U-Net. Estos métodos se entrenaron en un conjunto 
de datos que consta de 554 imágenes recopiladas entre 2015 y 2017 en el Hospital Universitario San 
Ignacio y en el Instituto IDIME en Bogotá, Colombia. Esta base de imágenes contiene anotaciones 
para tres tejidos diferentes: grasa visceral, grasa subcutánea y otros tejidos, generadas a través de 
herramientas de segmentación semiautomáticas. Resultados: El índice de Sørensen-Dice se utiliza 
como métrica de evaluación al comparar con los datos obtenidos del patrón de oro, que consiste 
en segmentaciones manuales realizadas por expertos. Se obtuvo que la arquitectura U-Net fue 
la más precisa en términos de segmentación de la composición corporal general, con un puntaje 
promedio de Dice de 93,0  %, seguida de cerca por la arquitectura Attention U-Net con un 
puntaje promedio de Dice de 92,0 %. Conclusiones: Según los resultados, se descubrió que las 
arquitecturas U-Net y Attention U-Net son las más adecuadas para el análisis de la composición 
corporal. Los resultados de segmentación producidos por estos métodos podrían usarse para 
obtener métricas precisas y ayudar a los médicos a comprender la condición física del paciente.

Summary
Purpose: Body composition analysis is a test that measures the proportion of various tissues 
of a person’s body. It serves as an indicator for certain medical conditions such as metabolic 
syndrome, cancer, diabetes, or cardiovascular disease. Traditionally, these analyses are done using 
anthropometric methods or clinical tools that provide an approximated result. Using the family of 
U-NET Deep Learning architectures, we perform a fully automatic segmentation of visceral and 
subcutaneous abdominal adipose tissues. We study these segmentation results and compare them 
against semiautomatic and manual generated ground truths. Materials and methods: We employ 
several variations of the U-Net Deep Learning architecture: U-Net, R2U-Net, Attention U-Net, and 
Attention R2U-Net. These methods were trained on a dataset, which consists of 554 images from the 
Hospital Universitario San Ignacio and IDIME Institute in Bogota, Colombia, collected from 2015 to 
2017. This dataset contains annotations for three different tissues: visceral fat, subcutaneous fat and 
other tissue generated through semiautomatic segmentation tools. Results: Sørensen-Dice index 
is used as the evaluation metric against the ground truth which consists of manual segmentations 
performed by experts. We obtained that the U-Net architecture was the most accurate in terms of 
overall body composition segmentation, with a mean Dice score of 93.0%, followed closely by the 
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a
Attention U-Net architecture. Conclusions: We found that the U-Net and Attention U-Net architectures are more suited for 
body composition analysis. The segmentation results produced by these methods could be used to obtain precise metrics 
and help physicians understand the patient’s physical condition.

Introducción
El estudio de la composición corporal es importante en la medida en 

que permite obtener un indicador para detectar diversas condiciones de 
salud. Mediante el análisis de la cantidad y la distribución de diferentes 
tipos de tejidos en el cuerpo, en particular tejido adiposo y muscular, 
es posible determinar la probabilidad de desarrollar ciertas condicio-
nes médicas, como las enfermedades cardiovasculares, la diabetes, la 
enfermedad renal crónica, los trastornos musculoesqueléticos (1), el 
cáncer (2) o el síndrome metabólico (3).

A pesar de los avances en la medicina moderna, los métodos de 
análisis de composición corporal contemporáneos están fuertemente 
basados en métodos antropométricos, como el cálculo del índice de 
masa corporal (IMC), el índice de cintura-cadera (WHR, por sus siglas 
en inglés) o el porcentaje de grasa corporal (BFP, por sus siglas en 
inglés). Para algunos de estos índices, como el IMC, se ha descubierto 
una relación entre los mismos y el incremento de riesgo de muerte. 
Dicho incremento además afecta especialmente a países con niveles 
sociodemográficos bajos y medios (1).

Una manera de aumentar la precisión de estos métodos de análisis de 
composición corporal consiste en medir la proporción de la distribución 
de tejido adiposo para cada paciente. El cálculo de estos indicadores 
ha sido recientemente incorporado en herramientas clínicas y a través 
de métodos de computación gráfica y aproximaciones basadas en 
segmentación de tejidos, la medición de la proporción de estos tejidos 
se ha hecho más precisa.

Más recientemente se han propuesto nuevas alternativas auto-
máticas y semiautomáticas para la cuantificación de tejido adiposo 
y muscular, usando en particular métodos de Aprendizaje Profundo. 
Las arquitecturas U-Net (4) han ganado popularidad para segmentar 
semánticamente imágenes del torso; muchos de estos avances todavía 
requieren validación de expertos, pues son susceptibles de aparición 
de sesgos y requieren aún trabajo para volverse alternativas confiables 
completamente automatizadas. Los sesgos más importantes en este tipo 
de trabajos provienen de los instrumentos usados y los operadores, por 
ejemplo para la obtención de las tomografías (TAC), la selección de 
conjuntos de datos no-representativos, el uso de datos de entrenamiento, 
e imágenes con problemas de anotación.

Para abordar dicha brecha, este estudio busca probar en detalle un 
subconjunto de las arquitecturas de Aprendizaje Profundo U-Net usando 
como entrada un grupo de imágenes mixtas para entrenar, comparar 
y evaluar el desempeño de cada una al segmentar tejido abdominal 
adiposo y tejido muscular.

Estado del arte
Trabajos previos han utilizado umbralización y operaciones de 

morfología básica para la detección de diferentes tipos de tejidos. Con 
el tiempo, varios estudios han incorporado también la cuantificación 
de tejido corporal para obtener información acerca de las condiciones 
de salud que un paciente pueda tener. Los avances más recientes han 
refinado las segmentaciones usando técnicas más avanzadas como 
crecimiento de regiones dinámico o modelos de contorno activo (5): 

algoritmos basados en imágenes para detectar las regiones estrechas 
que conectan los tejidos subcutáneo y visceral en el tronco (6) o al-
goritmos basados en análisis morfológico a partir de umbralizaciones 
sobre TAC para calcular los volúmenes de las regiones que contienen 
grasa visceral (7).

Una revisión de trabajos previos revela que los métodos basados 
en Aprendizaje Profundo se aproximan bastante al desempeño de 
expertos humanos para la segmentación. Algunos ejemplos en el área 
han empleado redes neuronales convolucionales (CNN, por sus siglas 
en inglés) para clasificar tejido adiposo visceral (VAT, por sus siglas 
en inglés) y tejido adiposo subcutáneo (SAT, por sus siglas en inglés) 
(8) o redes convolucionales neuronales automatizadas (A-CNN, por 
siglas en inglés) con el mismo fin (9).

Entre los métodos de Aprendizaje Profundo se destacan las arquitec-
turas basadas en redes neuronales convolucionales profundas (RNCP). 
En particular, la familia de arquitecturas U-Net ha ganado prevalencia. 
La arquitectura original U-Net fue desarrollada como una RNCP modi-
ficada cuya aplicación se demostró inicialmente para segmentación de 
células (4). Posteriormente, otros trabajos han demostrado el alcance 
de esta arquitectura. Versiones extendidas de la arquitectura que usan 
módulos residuales y de atención han tenido éxito en la segmentación 
del músculo paravertebral en TAC abdominales (10). Otras adaptaciones 
que emplean una arquitectura denominada U-Net densa han servido 
para detectar grasa, huesos y músculos en RM a través de un flujo de 
trabajo, o “pipeline”, de segmentación (11).

También se han desarrollado variaciones del modelo de arquitectura 
U-Net en busca de mejorar su eficacia. Se destacan las arquitecturas 
RU-Net y R2U-Net que fueron presentadas y probadas en conjuntos de 
datos de prueba para segmentar vasos sanguíneos en la retina, cáncer 
de la piel y lesiones pulmonares (12). Otra variación es la arquitectura 
Attention U-Net, probada en la segmentación de múltiples tejidos en TAC 
abdominales (13). Finalmente, está la arquitectura Attention R2U-Net, 
que ha sido probada en los mismos conjuntos de datos que la RU-Net y 
la R2U-Net (14). Más adelante se explican con detalle estas arquitecturas.

Las U-Net se han usado para análisis de composición corporal en 
TAC para segmentar músculo y SAT. En particular, esta arquitectura 
se ha usado para segmentar VAT, músculo y los órganos abdominales 
a la altura de la vértebra L3 (15). La U-Net también se ha usado para 
segmentar, además de VAT, tejido intermuscular adiposo a la misma 
altura (16) y contenido mixto intrapélvico a la altura supraacetabular 
(17). Finalmente, se han utilizado otras variaciones de la arquitectura, 
como la U-Net 3D multirresolución, para generar una volumetría de 
la composición corporal de tejidos en TAC a partir de un conjunto de 
datos anotados (18).

Todos estos trabajos sugieren que las arquitecturas basadas en 
U-Net pueden servir como base para la construcción de un método 
completamente automatizado de segmentación y cuantificación de 
tejido adiposo y muscular. En ese sentido, este trabajo busca explorar 
el conjunto de las arquitecturas de Aprendizaje Profundo U-Net, R2U-
Net, Attention U-Net y Attention R2U-Net, para estudiar su desempeño 
y determinar cuál de ellas es la más indicada para resolver el problema 
de segmentación de VAT y SAT en el análisis de composición corporal.
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Métodos y materiales

Imágenes
El conjunto de datos empleado consta de 513 imágenes abdominales 

de TAC tomadas por el Hospital Universitario San Ignacio y el instituto 
IDIME en Bogotá, Colombia. Estas imágenes fueron obtenidas del 
2015 al 2017 y cada una corresponde a un paciente diferente. De estas 
imágenes, 185 pertenecen a pacientes de sexo masculino en un rango 
de edad de entre 17 y 71 años, con una media de edad 48,1 años; 328 
de las imágenes pertenecen a pacientes de sexo femenino en un rango 
de edad de 17 a 87 años, con una media de edad de 46,6 años. Las 
imágenes tienen una resolución de 0,482×0,482 a 0,953×0,953 mm2, 
con tamaño matricial de 512×512 y espaciado entre los cortes de entre 
1 y 6 mm. Un radiólogo seleccionó un corte axial para cada paciente 
de forma manual, a la altura de la cuarta vértebra lumbar, con base en 
la definición de exceso de grasa visceral; el corte poseía un área mayor 
a 100 cm2 de grasa visceral medida en este nivel. La variedad de la 
población y el uso de imágenes provenientes de dos hospitales permiten 
mitigar algunos sesgos propios de los conjuntos de datos.

Patrón de oro
Para generar el patrón de oro, o verdad terreno, del tejido adiposo 

abdominal, tanto subcutáneo como visceral, se usó un conjunto de 41 
imágenes adicionales: 25 de hombres y 16 de mujeres. A partir de las 
segmentaciones manuales de tres expertos se creó un primer conjunto 
de validación con la intersección de las áreas identificadas por los mis-
mos en cada imagen. Posteriormente, se generó un segundo conjunto 
de validación a partir de la revisión de las intersecciones por un cuarto 
experto, y la segmentación resultante fue definida por consenso de los 
cuatro radiólogos. En este texto se menciona al primer conjunto como 
intersección y al segundo como consenso, respectivamente. La confor-
mación del patrón de oro usando esta estrategia permite también mitigar 
los sesgos cognitivos presentes en las anotaciones de los conjuntos de 
datos entrenamiento y validación.

Arquitecturas de Aprendizaje Profundo U-Net
En este trabajo se evaluó el desempeño de cuatro arquitecturas 

de RNCP: U-Net, R2U-Net, Attention U-Net y Attention R2U-Net. 
Típicamente las RNCP se especializan en la identificación de patrones 
en imágenes y su arquitectura básica está dividida en diferentes capas 
de procesamiento: convolución, agrupamiento, activación y comple-
tamente conectada.

La capa de convolución es la más importante en este tipo de ar-
quitecturas y está basada en una operación comúnmente utilizada en 
procesamiento de imágenes llamada convolución, la cual consiste en 
tomar pequeñas partes de una imagen (usando una ventana denominada 
filtro o kernel de  pixeles) y combinarlas con la imagen original para 
resaltar ciertas características. Esto se hace repetidamente en toda la 
imagen para producir una nueva imagen filtrada que muestra cómo las 
características se relacionan con diferentes partes de la imagen original. 
En el aprendizaje automático, las redes neuronales convolucionales 
utilizan este proceso para realizar tareas como la segmentación y la 
clasificación de objetos.

La capa de agrupamiento reduce la resolución de la imagen 
(submuestreo) al tiempo que preserva características. La capa de ac-
tivación introduce no-linearidad en la arquitectura y normalmente se 
implementa usando una Unidad Lineal Rectificada (ReLU) que elimina 
los valores negativos de la imagen filtrada para reemplazarlos por cero. 
Finalmente, la capa completamente conectada recibe como entrada 
las salidas de las capas anteriores y determina la probabilidad de cada 
clase o etiqueta en la imagen; en el caso particular de las escanografías 
abdominales, la probabilidad de que un pixel pertenezca a las clases 
VAT, SAT, a otros tipos de tejidos o al fondo de la imagen.

La arquitectura U-Net se basa en la arquitectura de la RNCP, pero 
añade operadores de interpolación para incrementar la resolución de las 
imágenes (supermuestreo) y para extraer características de alto nivel; 
además de no emplear capas completamente conectadas. Se denomina 
U-Net debido a su forma en U, que consiste en un camino que se contrae 
o que desciende (red de codificación) y un camino que se expande o 
que asciende (red de decodificación). La arquitectura busca aprender 
diferentes filtros a lo largo de ambas redes para extraer las características 
de la imagen que le permitan determinar qué pixeles pertenecen a alguna 
de las clases usadas para entrenar (SAT, VAT, otros tejidos y fondo).

La figura 1 ilustra las capas presentes en la arquitectura, incluyendo 
la red de codificación (segmento descendiente) y la red de decodifica-
ción (segmento ascendente). La red de codificación de la arquitectura 
U-Net consiste en cuatro bloques de submuestreo compuestos por las 
siguientes capas: dos convoluciones con kernels de 3×3 con una fun-
ción de activación ReLU, cuya salida es un mapa de características, y 
una operación de agrupamiento máximo de 2×2 con una longitud de 
paso 2 para submuestreo. La red de decodificación está formada por 
cuatro bloques de supermuestreo con las siguientes capas: una capa de 
convolución transpuesta para supermuestreo del mapa de caracterís-
ticas, una concatenación del mapa de características que proviene del 
correspondiente bloque de la red de codificación (ubicado a la misma 
altura en el segmento descendiente de la U) y dos convoluciones de 
3×3, seguidas de una ReLU. El bloque inferior que une las dos redes 
(ubicado en la base de la U) consiste en dos convoluciones con una 
función ReLU de activación. El bloque final de la red decodificadora 
aplica una convolución con un kernel de 1×1 para producir el mapa de 
segmentación final con el número de clases indicado (4).

La arquitectura R2U-Net está basada en la arquitectura Recurrent 
U-Net o RU-Net. La arquitectura RU-Net es una versión modificada 
de la arquitectura U-Net que usa capas convolucionales recurrentes 
hacia adelante (RCL) en lugar de capas convolucionales tradicionales. 
A través de RCL, una RU-Net permite una acumulación más efectiva 
de características entre las dos subredes. Una R2U-Net es, justamen-
te, una variante de la RU-Net que usa unidades residuales junto con 
RCL para transmitir salidas a las capas posteriores de la red y evitar la 
degradación de la eficiencia al momento de mantener características 
(12). La arquitectura R2U-Net se ilustra en la figura 2.

La arquitectura Attention U-Net está también basada en la U-Net, 
pero incorpora varias compuertas de atención (AG) para filtrar las ca-
racterísticas propagadas por las conexiones de salto de la arquitectura 
original. Esto ayuda a progresivamente eliminar segmentaciones en 
regiones asociadas con el fondo de la imagen (13).

Finalmente, la última arquitectura estudiada fue la Attention R2U-
Net. Esta arquitectura mezcla las unidades residuales con RCL de la 
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R2U-Net con las AG de la Attention U-Net (14). Tanto la Attention 
U-Net como la Attention R2U-Net se ilustran en las figuras 1 y 2, 
respectivamente.

En resumen, la arquitectura U-Net se basa en el cálculo de sucesivos 
filtros durante la etapa de submuestreo con el fin de reducir la imagen 
para resaltar a través de convoluciones, y a medida que se avanza en 
la etapa de aumento de muestreo, estas características se usan para 
ayudarle a la red a detectar los diferentes tipos de tejidos. Las varian-
tes que se exploraron añaden etapas que permiten que la red intente 
aprender a través de diferentes mecanismos (AG, RCL y similares) en 
qué zonas de la imagen debería concentrarse para mejorar la calidad 
de la segmentación.

Donde A está dado por la máscara de segmentación de la verdad 
terreno a través del patrón de oro, B es la máscara de segmentación 
generada para cada clase por cada una de las arquitecturas; A y B  son 
el número de elementos positivos en cada máscara. Para deducir el 
índice de Dice total, se calculó el puntaje para cada clase y luego se 
obtuvo el promedio.

Durante el entrenamiento de las redes se mide la discrepancia 
entre las predicciones del modelo y los valores reales a través de una 
función de pérdida. El objetivo de cada iteración es que se minimice la 
pérdida calculada a través de la respectiva función para la segmentación. 
En este caso se usaron, en particular, dos funciones para calcular la 
función de pérdida total: la función de pérdida enfocada y la función 
de pérdida Dice.

La función de pérdida enfocada FL(Pc ) está definida como:

Donde Pc es la probabilidad estimada para la clase c por el modelo, 
α es el factor de peso y γ es el factor de enfoque. La pérdida total para 
todas las clases, con C como el número total de clases, es calculada así:

Mientras tanto, la función de pérdida de Dice está basada en el 
índice de Dice y se define como:

Curva ROC
Adicionalmente, para medir el desempeño se usó la curva de ca-

racterística operativa del receptor (ROC, por sus siglas en inglés) para 
cada clase de manera independiente. La curva ROC se construye a partir 
de la proporción de verdaderos positivos contra la proporción de falsos 
positivos. La curva ROC es, en últimas, una curva de probabilidad, y 
calcular el área bajo la curva (AUC, por sus siglas en inglés) permite 
entender qué tan bueno es el modelo prediciendo o segmentando una 
clase contra todas las demás. Entre más cercano el valor de AUC esté 
a 1 para una clase en particular, mejor será la arquitectura prediciendo 
dicha clase (100 % de sus predicciones son correctas), e inversamente, 
entre más cercano esté el valor del AUC a 0, peor será el modelo.

Figura 1. Arquitecturas U-Net y Attention U-Net. Los componentes marca-
dos con (*) corresponden a la versión Attention de la arquitectura.

Figura 2. Arquitecturas R2U-Net y Attention R2U-Net. Los componentes 
marcados con (*) corresponden a la versión Attention de la arquitectura.

Medición del desempeño
Para medir el desempeño, se usó como métrica principal el índice 

de Dice (DSC):
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Conjunto de entrenamiento
Uno de los desafíos más importantes al momento de entrenar mo-

delos de redes neuronales consiste en la capacidad de generar conjuntos 
de datos de entrenamiento suficientemente grandes para garantizar que 
la red sea capaz de generalizar el aprendizaje a otras imágenes sin pro-
vocar sobreajuste. La cantidad de segmentaciones manuales dependerá 
siempre de los expertos; sin embargo, en aras de facilitar e incrementar 
la cantidad de imágenes utilizadas, se propone una estrategia diferente 
complementaria al uso del patrón del oro.

Para aumentar el número de imágenes segmentadas, se usó el 
software CAAVAT (Computer Assisted Analysis of Visceral Adipose 
Tissue). CAVAAT es una herramienta que permite estimar la cantidad 
de tejido adiposo y subcutáneo en TAC. Esta herramienta realiza una 
segmentación a través de una umbralización sobre la imagen del cuerpo 
del paciente con un intervalo de –500, 100 UH, y luego aísla el tejido 
adiposo a través de una umbralización con intervalo de –150, 50 UH. 
Finalmente, un contorno activo inicial se adhiere al cuerpo y un segundo 
contorno se adhiere al perineo para ayudar a diferenciar VAT y SAT. 
CAAVAT segmenta la imagen en cuatro clases de tejido: VAT, SAT, 
otros tejidos y fondo (figura 3). Se usó CAAVAT para segmentar las 
513 imágenes presentes en el conjunto de datos para medir la precisión 
de las arquitecturas.

Se validó la eficiencia de CAAVAT realizando una segmentación de 
las 41 imágenes del patrón de oro y comparándola contra los resultados 
de los expertos. CAAVAT obtuvo una eficiencia levemente inferior a la 
de los expertos en segmentación manual, como se muestra en la tabla 
1, cuando se usó el índice de DICE para comparar la segmentación 
individual de cada experto con relación al consenso en el patrón de oro. 

Tabla 1. Comparación de desempeño de expertos y 
CAAVAT contra el consenso en el patrón de oro

Segmentación Puntaje DICE

Experto 1 0,852 +- 0,002

Experto 2 0,858 +- 0,002

Experto 3 0,866 +- 0,002

CAAVAT 0,834 +- 0,002

Figura 3. Resultados de la segmentación de tejidos usando CAAVAT: a) VAT, b) SAT, c) otros tejidos y d) unión de todas las segmentaciones.

El objetivo de usar CAAVAT como experto adicional permite 
entrenar un modelo de Aprendizaje Profundo con mayor capacidad 
de generalización que no dependa únicamente de una estrategia de 
aumento de datos a partir de transformaciones sobre un conjunto re-
ducido de datos. En este caso, CAAVAT permitió a entrenar y validar 
los modelos con 513 imágenes en total, en lugar de 41 que hacían parte 
del patrón de oro.

Aumento de datos
El aumento de datos es una técnica esencial para el entrenamiento de 

redes basadas en Aprendizaje Profundo, incluyendo la familia de arqui-
tecturas U-Net estudiadas. Aumentar datos permite generalizar mejor y 
con más diversos ejemplos para incrementar la robustez de estas. Se hizo 
un aumento del 40 % de los datos de entrenamiento usando operaciones 
de redimensionamiento aleatorio, rotaciones aleatorias, recorte central, 
desplazamiento de intervalo y distorsión de color.

Evaluación y resultados
Para el entrenamiento de las arquitecturas, se dividió el conjunto 

de datos de la siguiente manera:

•	Un conjunto de entrenamiento de 353 imágenes, usadas para en-
trenar a la red neuronal tras cada época de entrenamiento.

•	Un conjunto de validación de 58 imágenes, usadas para validar la 
precisión de cada época de entrenamiento.

•	Un conjunto de prueba de 102 imágenes, usadas para ajustar los 
hiperparámetros de la red.

Adicional a estos conjuntos, se emplearon las 41 imágenes del 
patrón de oro para determinar el desempeño final de la red.

Todos los modelos fueron entrenados durante 200 épocas con una 
tasa de aprendizaje de 2×10-4 y con un tamaño del lote de entrenamiento 
de 4. Adicionalmente, se empleó el optimizador de gradiente estocástico 
descendiente con una tasa de decaimiento de β1 = 0,5 y β2 = 0,999.

El objetivo del entrenamiento es reducir la función de pérdida, que 
mide la diferencia entre la predicción ŷ y el correspondiente mapa de 
etiquetas y para una entrada x. La predicción ŷ es un tensor de tamaño 
RHxWxC con altura H, ancho W y C clases.

aImagen original b c d
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Para cada pixel de la entrada x, se obtiene un vector de estimación 
de probabilidad de clase. Para comparar la salida ŷ con el respectivo 
mapa de etiquetas, las clases de segmentación son codificadas usando 
One-hot para asimilar las dimensiones RHxWxC de la predicción. Para la 
evaluación final con el conjunto de prueba, el mejor modelo es selec-
cionado basado en el desempeño obtenido en el conjunto de validación.

Las tablas 2 y 3 muestran los resultados de la segmentación con cada 
arquitectura para las cuatro clases, así como el promedio por clase. Los 
resultados muestran que la arquitectura U-Net obtuvo el mejor valor 
de índice de Dice para VAT/SAT y otros tejidos, seguida muy de cerca 
por la arquitectura Attention U-Net. Ambas tuvieron un desempeño 
similar sobre todas las clases. Para analizar en mayor detalle, se obtuvo 
el índice Dice para cada clase en tres escenarios de prueba.

Para la tarea de análisis de composición corporal, las arquitecturas 
U-Net y Attention U-Net tuvieron un mejor desempeño para segmentar 

Tabla 2. Índices Dice obtenidos para la segmentación de VAT y SAT en el conjunto de datos para cada 
arquitectura con relación a la intersección

Arquitectura / clase Fondo Otros tejidos VAT SAT Promedio

U-Net 0,99 +- 0,00 0,92 +- 0,02 0,84 +- 0,04 0,95 +- 0,01 0,93 +- 0,02

Attention U-Net 0,99 +- 0,00 0,91 +- 0,02 0,83 +- 0,05 0,94 +- 0,01 0,92 +- 0,02

R2U-Net 0,92 +- 0,02 0,72 +- 0,06 0,66 +- 0,11 0,55 +- 0,14 0,71 +- 0,08

Attention R2U-Net 0,885 +- 0,044 0,85 +- 0,04 0,01 +- 0,14 0,38 +- 0,14 0,53 +- 0,06

Tabla 3. Índices Dice obtenidos para la segmentación de VAT y SAT en el conjunto de datos para cada 
arquitectura con relación al consenso

Arquitectura / clase Fondo Otros tejidos VAT SAT Promedio

U-Net 0,99 +- 0,00 0,92 +- 0,02 0,84 +- 0,05 0,95 +- 0,01 0,93 +- 0,02

R2U-Net 0,92 +- 0,02 0,72 +- 0,06 0,66 +- 0,11 0,56 +- 0,16 0,72 +- 0,08

Attention U-Net 0,99 +- 0,00 0,91 +- 0,02 0,83 +- 0,05 0,94 +- 0,01 0,92 +- 0,02

Attention R2U-Net 0,88 +- 0,04 0,85 +- 0,04 0,02 +- 0,01 0,38 +- 0,14 0,53 +- 0,06

Tabla 4. Comparación de resultados de puntaje Dice para la segmentación de VAT y SAT de cuatro estudios de 
referencia y el mejor resultado del trabajo actual

Autores Número de pacientes Puntaje Dice para VAT Puntaje DICE para SAT

Weston et al. (15) 2.369 - 0,98

Dabiri et al. (16) 2.529 0,98 0,98

Hemke et al. (17) 200 - 0,95

Koitka et al. (18) 50 - 0,99

Estudio actual 513 0,84 0,95

ambos tipos de tejido adiposo. En todos los casos, la clase más difícil 
para segmentar fue el VAT debido a la alta variabilidad de ubicación y 
tamaño por cada paciente, así como la presencia de otros tejidos mus-
culares y de contenido intestinal en las regiones aledañas o internas. 
Esta dificultad se hizo bastante notoria en las arquitecturas U-Net que 
emplean RCL con unidades residuales.

Con relación a otros trabajos, la tabla 4 muestra los puntajes de 
referencia de los estudios (15-18). Si bien los puntajes obtenidos están 
por debajo de las referencias, la mayor limitación actual consiste en 
el conjunto de imágenes de partida y, si bien los resultados para SAT 
se acercan, la segmentación de VAT tiene mucho menor puntaje que 
el obtenido por Dabiri et al (16). En términos del número de pacientes 
empleados y el puntaje de Dice para SAT, los resultados obtenidos se 
acercan en parámetros y resultados a los de Hemke et al. (17).
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La figura 4 muestra algunos resultados cualitativos del análisis de 
composición corporal en comparación con la segmentación con rela-
ción al consenso. Para el caso de las arquitecturas U-Net y Attention 
U-Net, las clases segmentadas tienen aspectos similares con relación 
a la verdad terrena para la intersección y el consenso. En el caso de 
la arquitectura R2U-Net, esta obtuvo resultados menos consistentes 

y cualitativamente tendió a equivocarse más en el abdomen superior, 
alterando la segmentación de VAT y SAT en dichas regiones. Finalmen-
te, la arquitectura Attention R2U-Net tuvo un desempeño muy bajo, 
ignorando en muchos casos las fronteras de los tejidos y clasificando 
la mayoría de las regiones de la imagen como VAT.

Figura 4. Resultados cualitativos de la segmentación en diferentes pacientes usando las distintas arquitecturas.
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Para entender mejor el bajo desempeño de las arquitecturas R2U-
Net y Attention R2U-Net, se hizo una validación con únicamente dos 
clases: otros tejidos y tejido adiposo; es decir, VAT y SAT conjunta-
mente. Se usó como punto de comparación la arquitectura U-Net con el 
mismo número de clases. En la tabla 5 se resumen los resultados para 
cada segmentación calculados con la media y la desviación estándar 
del índice de Dice para cada arquitectura. En ambos casos el índice 
Dice obtenido con R2U-Net y Attention R2U-Net tuvo un aumento 
considerable, en el caso de la arquitectura Attention R2U-Net, esta se 
acercó bastante al desempeño de U-Net, mientras que R2U-Net apenas 
si tuvo variación.

Tabla 5. Índices Dice obtenidos en el conjunto de 
datos para otros tejidos y tejido adiposo para cada 
arquitectura

Arquitectura / clase Otros tejidos
Tejido 

adiposo

U-Net 0,91 +- 0,03 0,92 +- 0,15

R2U-Net 0,71 +- 0,07 0,62 +- 0,08

Attention R2U-Net 0,91 +- 0,03 0,90 +- 0,04

Curva ROC
Para calcular el AUC de cada una de las arquitecturas, se trazó la 

curva ROC por cada una de las clases contra las demás clases existen-
tes, analizando el problema de la segmentación para cada tejido como 
si se tratara de múltiples clasificaciones binarias, usando el consenso 
como verdad terrena para calcular la proporción de verdaderos posi-
tivos y falsos positivos para cada arquitectura.

Las figuras 5 y 6 muestran los resultados de AUC para las arqui-
tecturas U-Net y Attention U-Net. Ambas arquitecturas muestran un 
valor de AUC aproximadamente de 1,00 para las clases asociadas a 
otros tejidos y de 0,99 para las clases asociadas a SAT. Con relación 
a la clase asociada a VAT, la arquitectura U-Net tiene un valor leve-
mente menor (0,97) que la arquitectura Attention U-Net (0,98). Estos 
valores indican que ambas arquitecturas son capaces de clasificar 
correctamente hasta un 97 % y 98 % de pixeles pertenecientes al 
tejido adiposo abdominal de cada paciente.

Por otro lado, de acuerdo con las figuras 7 y 8, las arquitecturas 
R2U-Net y Attention R2U-Net tienen valores de AUC más bajos. El 
valor de AUC asociado a otros tejidos es menor que en las arquitectu-
ras U-Net (0,99 y 0,97). Los valores de AUC asociados a VAT son si-
milares (0,96 y 0,98); sin embargo, el valor de SAT presenta problemas 
importantes: para la arquitectura R2U-Net es de cerca de 0,92 y para 
la arquitectura Attention R2U-Net es de 0,35. Si se examinan todos 
los valores tomando en cuenta el índice de Dice, pareciera indicar que 
estas arquitecturas son capaces de aislar al menos una parte del VAT, 
aunque no corresponda a la región total. En particular, la arquitectura 
Attention R2U-Net tiene problemas importantes con la detección de 
SAT, como confirma el análisis cualitativo de las segmentaciones.

Figura 5. Curva ROC para la arquitectura U-Net para las clases Otros tejidos, 
VAT y SAT, junto con su respectivo de AUC.

Figura 6. Curva ROC para la arquitectura Attention U-Net para las clases 
Otros tejidos, VAT y SAT, junto con su respectivo de AUC.
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Figura 7. Curva ROC para la arquitectura R2U-Net para las clases Otros 
tejidos, VAT y SAT, junto con su respectivo de AUC.

Figura 8. Curva ROC para la arquitectura Attention R2U-Net para las clases 
Otros tejidos, VAT y SAT, junto con su respectivo de AUC. 

Discusión
En este artículo se describe cómo se entrenó, se probó y se estudió 

un subconjunto de arquitecturas de Aprendizaje Profundo basadas en 
U-Net con el propósito de realizar análisis de composición corporal. 
Estas arquitecturas funcionan bastante bien para la segmentación de 
las regiones asociadas a VAT y a SAT. En particular, la arquitectura 
U-Net y Attention U-Net obtuvieron el mejor desempeño para las 
clases individuales con los escenarios de prueba, demostrando su 
relevancia como uno de los métodos de segmentación semántica a la 
vanguardia del área de procesamiento de imágenes médicas. Entender 
y explorar en mayor detalle este par de arquitecturas podría resultar 
en aún mejores resultados para los análisis de composición corporal.

El bajo desempeño de las arquitecturas con unidades residuales y 
RCL sigue siendo sorprendente. Aunque las implementaciones origi-
nales aplicadas a la segmentación de lesiones mostraron el potencial 
de las arquitecturas R2U-Net y Attention R2U-Net, su eficacia es 
cuestionable para problemas con múltiples clases desbalanceadas. Sin 
embargo, se logró incrementar considerablemente la eficiencia de la 
Attention R2U-Net cuando se redujo el problema a una clasificación 
con dos clases más balanceada: tejido adiposo y otros tejidos, sin 
obtener una mejora sustancial en el desempeño de la arquitectura 
R2U-Net. Esto lleva a pensar que estas últimas arquitecturas pueden 
funcionar mejor en otros tipos de problemas, particularmente, seg-
mentación binaria de tejidos con clases mejor balanceadas.

Los resultados aquí documentados muestran que las arquitecturas 
basadas en U-Net sin unidades residuales ni RCL pueden servir de 
base para la implementación de métodos automáticos de segmentación 
que sean capaces de aliviar la dependencia de cálculos exclusivamente 
antropométricos para analizar los tejidos de un paciente y detectar 
tempranamente sus condiciones de salud. Estas arquitecturas son in-
valuables y pueden apoyar enormemente el trabajo de los expertos y 
el desarrollo de herramientas completamente automáticas en el campo.

Con relación a la comparación con otros estudios similares (tabla 
4), los resultados señalan la necesidad de ampliar el conjunto de en-
trenamiento y aumentar la mayor variedad en términos de tiempo de 
obtención e instrumentos, para lograr una mejor generalización de las 
arquitecturas. Si bien este conjunto de datos mitiga los sesgos asocia-
dos a las arquitecturas, son necesarios más datos de entrenamiento. 
Adicionalmente, el enfoque en segmentación de SAT además de VAT 
añade una capa de complejidad que solo otros estudios abordan direc-
tamente, o emplean directamente clases diferentes, concentrándose 
particularmente en la segmentación de VAT.

A futuro, los autores consideran importante continuar recopi-
lando escanografías abdominales para enriquecer los conjuntos de 
entrenamiento, haciendo énfasis en obtener variedad en términos de 
la obtención: máquinas, operadores y población. Del mismo modo, 
prevén la continuación del uso de CAVAAT como herramienta de ano-
tación para facilitar el trabajo de los expertos al momento de generar 
patrones de oro que permitan probar y validar los entrenamientos de 
las arquitecturas. Finalmente, la segmentación del músculo paraver-
tebral es otro de los desafíos por abordar, que permitirá mejorar los 
resultados para discriminar los tejidos de interés para estas arquitec-
turas con mayor precisión.
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