

Canadian Association of Radiologists Statement on Environmental Sustainability in Medical Imaging

Canadian Association of
Radiologists Journal
2025, Vol. 76(1) 44–54
© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/08465371241260013
journals.sagepub.com/home/caj

Kate Hanneman^{1,2}, Andrew Szava-Kovats³, Brent Burbridge⁴,
David Leswick⁴, Brandon Nadeau⁵, Omar Islam⁶,
Emil J. Y. Lee⁷, Alison Harris⁸, Candyce Hamel⁹,
and Maura J. Brown¹⁰

Abstract

Immediate and strategic action is needed to improve environmental sustainability and reduce the detrimental effects of climate change. Climate change is already adversely affecting the health of Canadians related to worsening air pollution and wildfire smoke, increasing frequency and intensity of extreme weather events, and expansion of vector-borne and infectious illnesses. On one hand, radiology contributes to the climate crisis by generating greenhouse gas emissions and waste during the production, manufacture, transportation, and use of medical imaging equipment and supplies. On the other hand, radiology departments are also susceptible to equipment and infrastructure damage from flooding, extreme temperatures, and power failures, as well as workforce shortages due to injury and illness, potentially disrupting radiology services and increasing costs. The Canadian Association of Radiologists' (CAR) advocacy for environmentally sustainable radiology in Canada encompasses both minimizing the detrimental effects that delivery of radiology services has on the environment and optimizing the resilience of radiology departments to increasing health needs and changing patterns of disease on imaging related to climate change. This statement provides specific recommendations and pathways to help guide radiologists, medical imaging leadership teams, industry partners, governments, and other key stakeholders to transition to environmentally sustainable, net-zero, and climate-resilient radiology organizations. Specific consideration is given to unique aspects of medical imaging in Canada. Finally, environmentally sustainable radiology programs, policies, and achievements in Canada are highlighted.

Résumé

Une action stratégique immédiate est nécessaire en vue d'améliorer la durabilité de l'environnement et réduire les effets néfastes du changement climatique. Le changement climatique a déjà des effets néfastes sur la santé des Canadiens en raison de l'aggravation de la pollution atmosphérique et de la fumée des incendies de forêt, de l'augmentation de la fréquence et de l'intensité des phénomènes météorologiques extrêmes, ainsi que de la multiplication et de la propagation des maladies à transmission vectorielle et des maladies infectieuses. D'une part, la radiologie contribue à la crise climatique en générant des émissions de gaz à effet de serre et des déchets lors de la production, de la fabrication, du transport et de l'utilisation

¹ Department of Medical Imaging, University of Toronto, Toronto, ON, Canada

² University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada

³ Peter Lougheed Hospital, Alberta Health Services, Calgary, AB, Canada

⁴ Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada

⁵ Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada

⁶ Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada

⁷ Department of Medical Imaging, Fraser Health Authority, Vancouver, BC, Canada

⁸ Department of Radiology, University of British Columbia, Vancouver, BC, Canada

⁹ Canadian Association of Radiologists, Ottawa, ON, Canada

¹⁰ Diagnostic Imaging, BC Cancer, University of British Columbia, Vancouver, BC, Canada

Corresponding Author:

Kate Hanneman, Toronto General Hospital, University Health Network, 1 PMB-298, 585 University Avenue, Toronto, ON M5G 2N2, Canada.

Email: kate.hanneman@uhn.ca

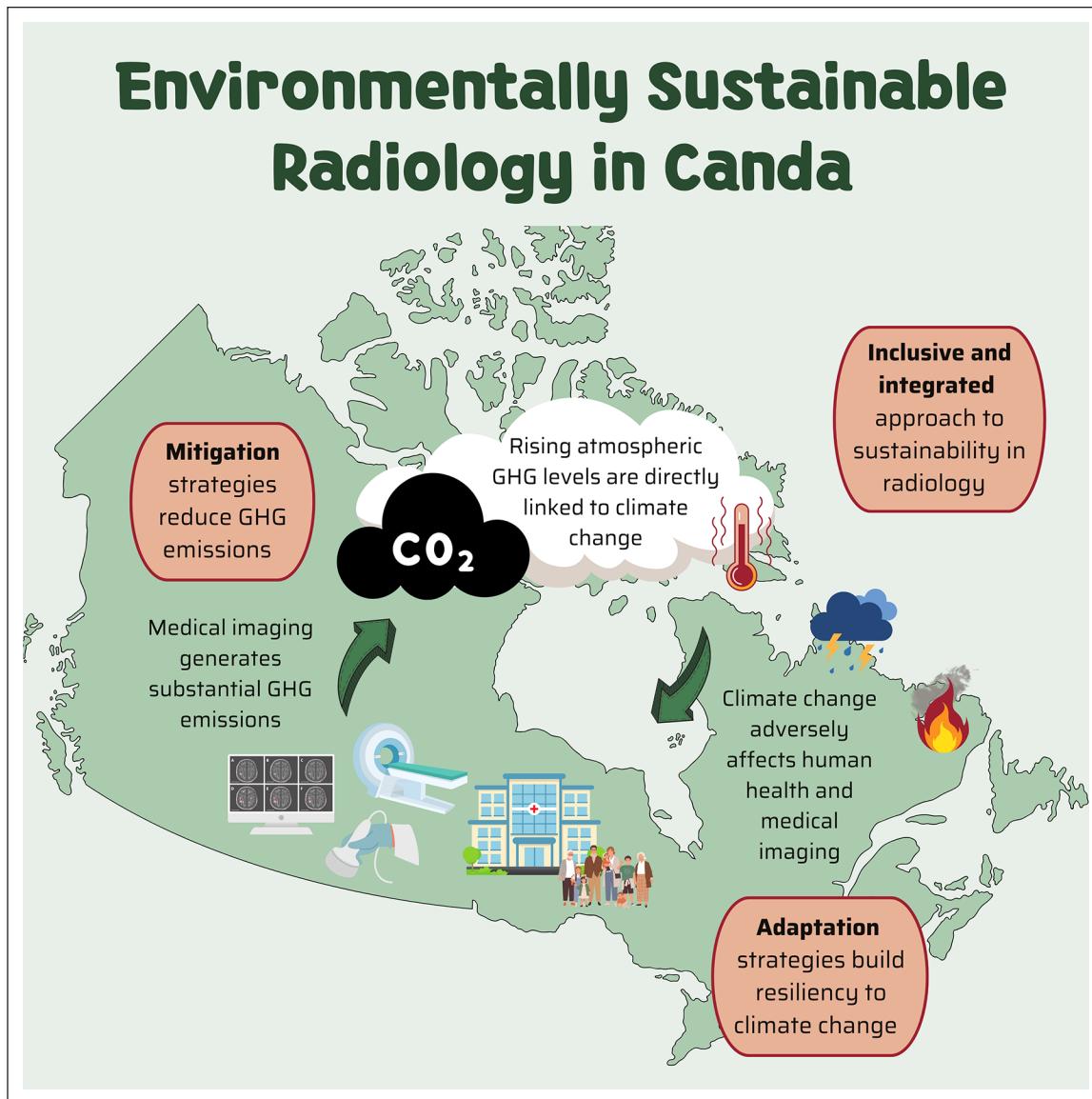
d'équipements et de fournitures d'imagerie médicale. D'autre part, les services de radiologie sont également exposés aux dommages causés aux équipements et aux infrastructures par les inondations, les températures extrêmes et les pannes de courant, ainsi qu'aux pénuries de main-d'œuvre dues aux blessures et aux maladies, ce qui risque de perturber les services de radiologie et d'augmenter les coûts. Le plaidoyer de l'Association canadienne des radiologistes (CAR) en faveur d'une radiologie durable sur le plan écologique au Canada englobe à la fois la réduction des effets néfastes de la prestation de services de radiologie sur l'environnement et l'optimisation de la capacité des services de radiologie à s'adapter à l'augmentation des besoins en matière de santé et à l'évolution des schémas pathologiques en matière d'imagerie liés au changement climatique. Le présent énoncé de position fournit des recommandations et des pistes précises visant à aider les radiologistes, les équipes de direction de services d'imagerie médicale, les partenaires du secteur, les gouvernements et d'autres parties prenantes majeures à assurer la transition vers des organisations de radiologie durables sur le plan environnemental, carboneutres et qui sauront faire face aux changements climatiques. Une attention particulière est accordée aux aspects uniques de l'imagerie médicale au Canada. Enfin, les programmes, les politiques et les réalisations du Canada en matière de radiologie respectueuse de l'environnement sont mis en évidence.

Keywords

climate change, environmental sustainability, diagnostic radiology, medical imaging, greenhouse gas emissions

Background and Rationale

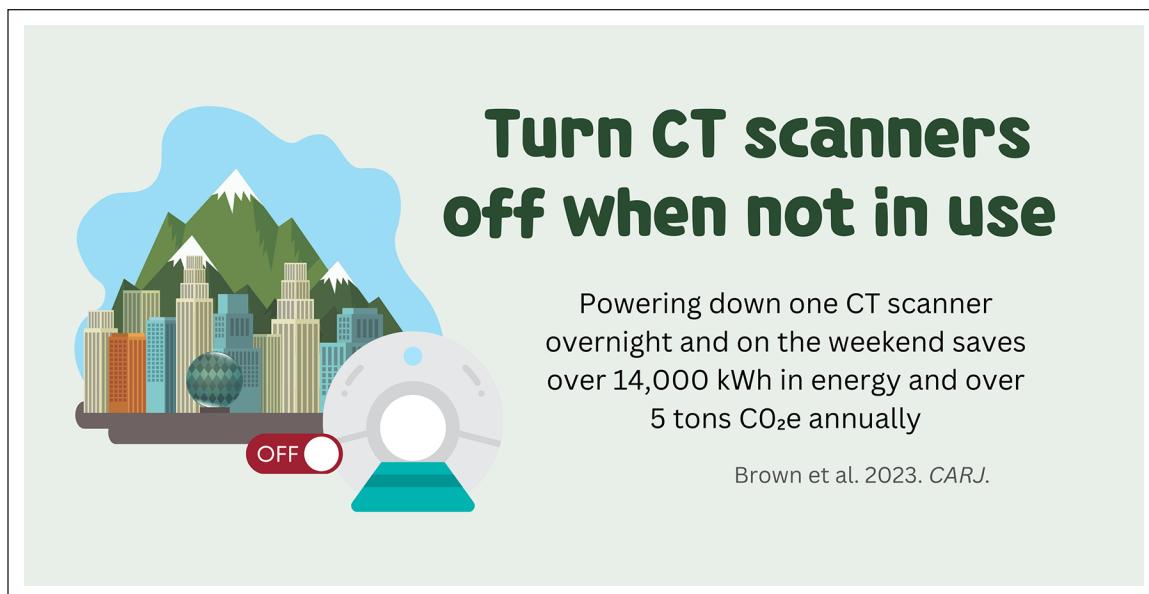
Immediate and strategic action is needed across sectors to improve environmental sustainability and reduce the detrimental effects of climate change. The predominant driver of climate change is human activities related to burning fossil fuels, which increase atmospheric greenhouse gas (GHG) levels, leading to rising global temperatures and disruption of climate and weather systems. A 2018 life cycle analysis estimated that Canada's healthcare system was responsible for 33 million tons of carbon dioxide equivalents (CO₂e) annually, accounting for 4.6% of the national total of GHG emissions.¹

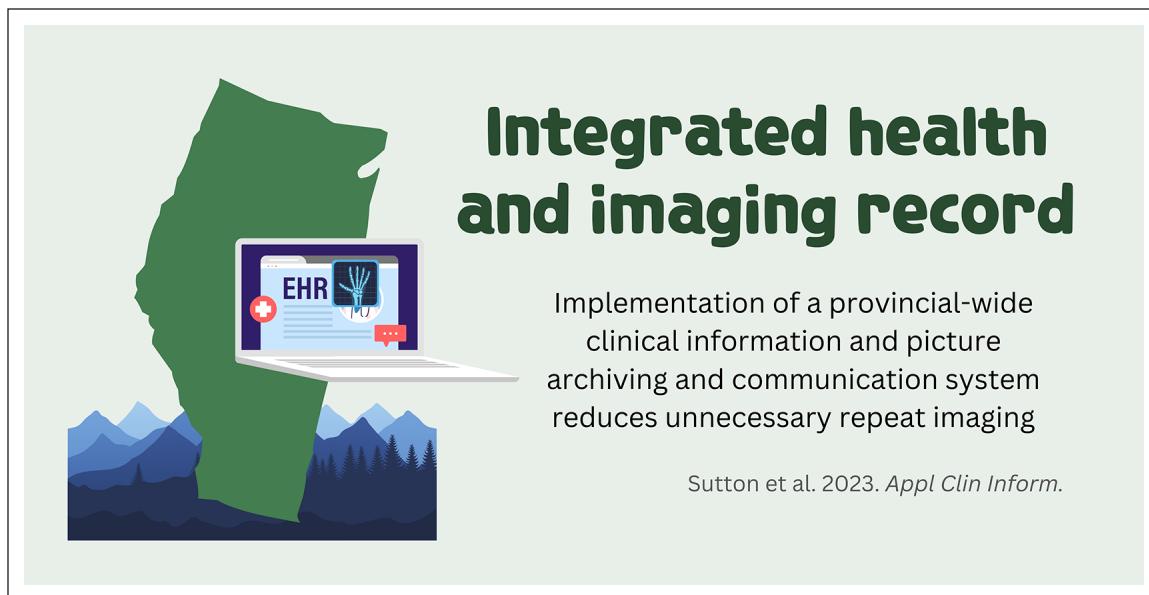

Radiology contributes to the climate crisis by generating GHG emissions and waste during the production, manufacture, transportation, and use of medical imaging equipment and supplies.²⁻⁴ A cross-sectional analysis of a single large Canadian hospital-based radiology department demonstrated substantial GHG emissions of 3235 tons CO₂e annually, equivalent to the energy consumed by 422 single-family homes.⁵ Mitigation strategies to reduce GHG emissions and achieve net-zero, environmentally sustainable radiology departments are needed. At the same time, radiology departments must also build resiliency to current and future impacts of the climate crisis.⁶

Climate change is already adversely affecting the health of Canadians related to worsening air pollution and wildfire smoke, increasing frequency and intensity of extreme weather events, and expansion of vector-borne and infectious illnesses.⁷ These health effects result in higher health needs and healthcare utilization among the patients and populations served by medical imaging departments in Canada. Climate

change affects everyone; however, vulnerable and disadvantaged individuals and groups are disproportionately affected due to health inequities.⁸ Radiology departments are also susceptible to equipment and infrastructure damage from flooding, extreme temperatures, and power failures, as well as workforce shortages due to injury and illness, potentially disrupting radiology services and increasing costs.⁹

The Canadian Association of Radiologists' (CAR) advocacy for environmentally sustainable radiology in Canada encompasses both minimizing the detrimental effects that delivery of radiology services has on the environment and optimizing the resilience of radiology departments to increasing health needs and changing patterns of disease on imaging related to climate change (Figure 1). An overarching inclusive and integrated approach is needed to support environmentally sustainable radiology in Canada, inclusive of diverse perspectives and mindful of the linkages between social and environmental determinants of health.


This document was inspired by and modelled after the Canadian Medical Association's policy on Environmentally Sustainable Health Systems in Canada.¹⁰ The CAR environmental sustainability statement provides specific recommendations and pathways to help guide radiologists, medical imaging leadership teams, industry partners, governments, and other key stakeholders to transition to environmentally sustainable, net-zero, and climate-resilient radiology organizations. Specific consideration is given to unique aspects of medical imaging in Canada including the public payor system administered in each province and the vast geography with implications related to equitable access to medical imaging in rural and remote communities.


Figure 1. Interconnected relationship between radiology, climate change, and environmental sustainability in Canada. Mitigation strategies reduce greenhouse gas (GHG) emissions. Adaptation strategies build resiliency to current and future impacts of the climate crisis. An inclusive and integrated approach is needed to support environmentally sustainable radiology, inclusive of diverse perspectives and mindful of the linkages between social and environmental determinants of health.

Environmentally sustainable radiology programs, policies, and achievements in Canada are highlighted including energy and cost-savings associated with powering down CT units when not in use in Vancouver (Figure 2),¹¹ unnecessary repeat imaging avoided with implementation of a provincial-wide clinical information and picture archiving and communication system in Alberta and other provinces (Figure 3),¹² implementation and evaluation of remotely controlled, robotic ultrasound in remote northern

communities in Saskatchewan (Figure 4),¹³ GHG emission and cost savings associated with implementation of portable low-field MRI in a remote Ontario community (Figure 5),¹⁴ and energy and GHG emission savings associated with implementation of abbreviated MRI protocols in Toronto (Figure 6).¹⁵ However, further action is needed to achieve sustainable and climate-resilient radiology departments in Canada and to ensure a healthy and sustainable future for current and future generations.

Figure 2. Energy and cost-savings associated with powering down CT units when not in use.¹¹

Figure 3. Integrated provincial-wide clinical information and picture archiving and communication system can reduce the need for repeat imaging and associated greenhouse gas emissions.¹²

Recommendations

The CAR board has endorsed multiple recommendations and actions regarding radiology environmental sustainability in Canada. To ensure an inclusive and integrated approach to building sustainable radiology departments, the CAR calls for

an inclusive and integrated approach to sustainable radiology (Table 1). To achieve climate-resilient radiology departments, the CAR calls for medical imaging climate adaptation, resilience, and emergency preparedness (Table 2). To achieve net-zero, environmentally sustainable radiology departments, the

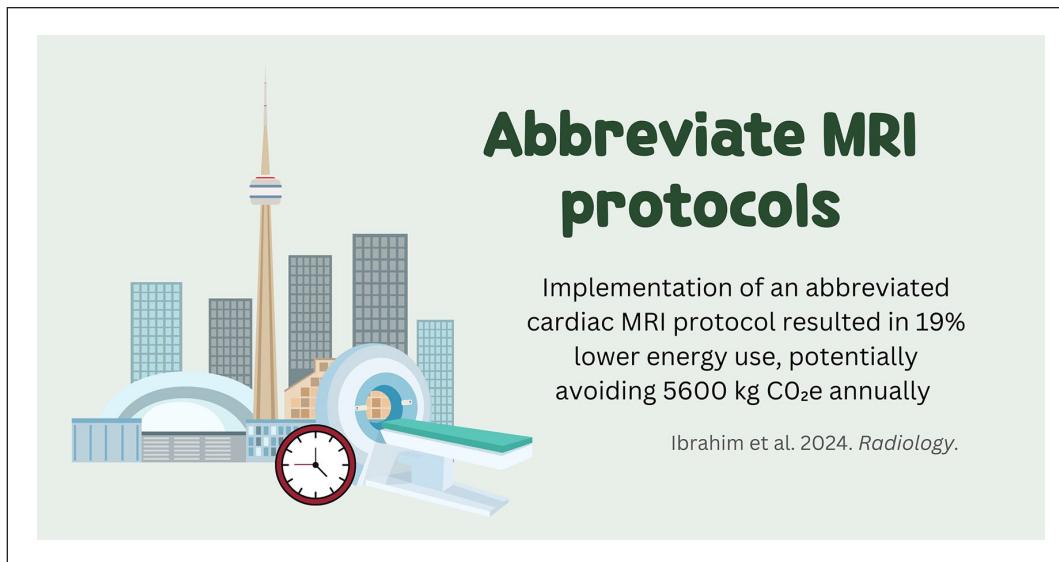
Remotely controlled robotic ultrasound

70% of remote telerobotic ultrasound examinations performed in Northern Saskatchewan communities were sufficient for diagnosis, minimizing patient travel and reducing wait times for imaging

Adams et al. 2022. *J Am Coll Radiol.*

Figure 4. Remotely controlled robotic ultrasound can potentially reduce patient travel and greenhouse gas emissions while improving access to medical imaging.¹³

Portable low-field MRI


Implementation of portable low-field MRI in a remote Ontario community demonstrated diagnostic image quality with lower energy and potential annual cost savings of \$854,841

DesRoche et al. 2023. *Can J Neurol Sci.*

Figure 5. Portable low-field MRI can potentially avoid greenhouse gas emissions associated with patient and radiologist travel and reduce cost.¹⁴

CAR calls for energy and greenhouse gas emission targets, environmentally sustainable medical imaging equipment, environmentally sustainable medical imaging policies and procedures, environmentally sustainable purchasing in medical imaging, waste reduction in medical imaging,

sustainable transportation in medical imaging, reduction of low-value and unnecessary medical imaging, sustainable resources and environmental contamination, and environmentally sustainable development and use of technology in radiology (Table 3).

Figure 6. Implementation of an abbreviated cardiac MRI protocol reduces time, energy use, and greenhouse gas emissions.¹⁵

Table 1. Actions to Ensure an Inclusive and Integrated Approach to Building Sustainable Radiology Departments.

Type of action	Calls to action
<p>An inclusive and integrated approach to sustainable radiology Refers to the lens we must apply when building sustainable radiology departments, inclusive of diverse perspectives and mindful of the linkages between social and environmental determinants of health</p>	<ul style="list-style-type: none"> • Governments to coordinate investments in health promotion, disease prevention, and early detection, including implementing and supporting imaging-based screening programs for breast cancer, coronary artery calcium, and CT colonography⁶ • Residency and fellowship training programs to incorporate training that addresses the symptoms and causes of climate-related health threats, as well as the health equity impacts on those who are disproportionately affected by climate change¹⁶

Table 2. Actions to Achieve Climate-Resilient Radiology Departments.

Type of action	Calls to action
<p>Medical imaging climate adaptation, resilience, and emergency preparedness Refers to minimizing radiology departments' vulnerability to climate-related impacts and climate-related emergencies by strengthening capacity and resiliency in the human and built environment</p>	<ul style="list-style-type: none"> • Radiology departments to develop disaster management protocols to prepare for extreme weather events including potential work-force shortages and surges in imaging volumes⁶ • Residency and fellowship training programs to incorporate climate adaptation into the curriculum to ensure future radiologists are prepared to appropriately diagnose climate-related illnesses^{17,18} • Professional societies and journals to provide education for practicing radiologists on climate change and changing disease patterns including expansion of vector borne illnesses and increased cardiovascular complications that may be identified on medical imaging^{2,19} • Hospitals and medical imaging departments to upgrade infrastructure to minimize damage to imaging departments and equipment in the event of flooding, storms, extreme temperatures, and power outages^{6,20} • Hospitals and medical imaging departments to ensure that information technology systems and data storage have redundancy and back-up power sources⁶

Table 3. Actions to Achieve Net-Zero, Environmentally Sustainable Radiology Departments.

Type of action	Calls to action
Energy and greenhouse gas emission targets Refers to setting and developing a plan to achieve specific energy-use and GHG emission targets in radiology departments	<ul style="list-style-type: none"> • Government, regulators, and professional societies to develop sustainability related metrics and provide targets to reduce emissions for each imaging modality²¹ • Vendors and industry partners to adhere to sustainability guidelines for reporting and GHG emissions reduction targets^{22,23} • Hospital and medical imaging administrators to develop organizational and departmental sustainability plans, define key performance indicators, set emissions reduction targets, and take actions to make their organizations more sustainable⁶ • Radiologists, technologists, and leadership teams to advocate for net-zero targets²⁴ • Governments and regulators to define and mandate environmental performance and resilience standards for new and refurbished medical imaging equipment²⁵
Environmentally sustainable medical imaging equipment Refers to the reduction of energy intensity, associated GHG emissions and environmental impact of medical imaging equipment	<ul style="list-style-type: none"> • Vendors and industry partners to develop medical imaging equipment with lower energy requirements and automated low power modes in idle and off states⁶ • Radiology departments to consider low-field MRI and other emerging medical imaging technology with lower energy and associated GHG emissions when appropriate²⁰ • Funding organizations and professional societies to incentivize and fund development and implementation of medical imaging equipment with lower energy and GHG emissions² • Radiology departments to implement policies to reduce wasted energy including protocols to turn equipment off overnight and on the weekend when not in use²⁶ • Radiology and hospital information technology teams to evaluate software to automatically power down computer workstations and other electronics when not in use in non-operational hours including overnight and weekends²⁷ • Radiology departments and leadership teams to optimize scheduling of imaging to reduce idle time between examinations and increase overall utilization per imaging unit²⁸ • Radiologists to abbreviate imaging protocols to reduce use-phase emissions per imaging examination¹⁵ • Radiology administrators to reduce energy use through changing energy use practices and investing in equipment such as motion sensor lighting and climate control systems²⁹ • Radiology departments to optimize data storage and define policies for data retention and storage³⁰ • Radiology departments and procurement teams to develop and implement sustainable procurement goals and strategies that increase the proportion of sustainable purchase orders and contracts³¹ • Radiology departments and procurement teams to set targets to switch to reusable supplies from disposable supplies where feasible, to align with circular economy principles² • Radiology departments and leadership team to include environmental sustainability in procurement evaluation criteria and requests for proposals (Scope 3)² • Radiology leadership to engage hospital administration teams to invest in clean energy infrastructure rather than fossil fuel boilers (Scope 1) and advocate for purchase of electricity created by renewables rather than fossil fuels (Scope 2)³²
Environmentally sustainable medical imaging policies and procedures Refers to development of policies and procedures to reduce use-phase GHG emissions in radiology departments	
Environmentally sustainable purchasing in medical imaging Refers to reduction of upstream and downstream adverse environmental impacts of purchasing and procurement of in radiology infrastructure, equipment, and supplies	

(continued)

Table 3. (continued)

Type of action	Calls to action
Waste reduction in medical imaging Refers to reduction or sustainable management of medical and non-medical waste in radiology	<ul style="list-style-type: none"> • Radiology departments to collaborate with suppliers and health care providers to reduce waste by transitioning from single-use disposable products to reusable products, redesigning common interventional radiology procedure kits and improving disposal, reprocessing, and recycling methods for imaging products and supplies³³ • Vendor partners and radiology departments to collaborate on development and implementation of programs for recycling unused contrast material including iodinated contrast and gadolinium-based contrast³⁴ • Radiology departments and hospitals to ensure that infrastructure is in place for recycling and composting of non-medical waste³⁵ • Governments to collaborate with health authorities to reduce patient travel and improve health equity by providing local access to imaging services when feasible, particularly in northern, remote, rural, and Indigenous communities^{13,36} • Radiology departments to coordinate imaging with other healthcare appointments to minimize patient travel for multiple visits³⁷ • Government, health systems, and radiology departments to promote, provide infrastructure for, and incentivize active and low-carbon transportation for patients, caregivers, and radiology team members³⁸ • Governments to collaborate with health authorities to reduce regulatory barriers to remote radiologist interpretation of imaging studies, when appropriate • Relevant radiologists and departments to implement remote reporting when feasible, to reduce pollution and emissions related to radiologist transportation³⁹ • Governments to finance zero-emission vehicle replacements for healthcare fleets, including vehicles used in the delivery of mobile imaging infrastructure to remote communities • Professional radiology societies, in collaboration with medical specialty societies and associations, to develop guidelines to Image Wisely and reduce unnecessary and excessive medical imaging⁴⁰ • Governments to collaborate with health authorities to reduce unnecessary repeat imaging by developing information technology solutions to facilitate access to prior medical imaging examinations from outside centers¹² • Governments to collaborate with health authorities to reduce unnecessary repeat imaging by providing incentives and reimbursement for radiologist second opinion interpretations of prior relevant imaging • Radiologists and referring clinicians to adhere to appropriate use guidelines for initial and repeat imaging including follow-up of incidental findings⁴¹ • Radiology departments and hospital information technology to automate clinical decision support tools in electronic health records to reduce unnecessary low-value imaging and align with appropriate use guidelines while ensuring capacity to meet current and future medical imaging needs⁴² • Medical, residency, and fellowship training programs to incorporate education on low-value imaging and appropriate use criteria
Sustainable transportation in medical imaging Refers to reduction of air pollution and GHG emissions of transportation associated with medical imaging including patients and the workforce	
Reduction of low-value and unnecessary medical imaging Refers to reducing the adverse environmental impact of medical imaging services via resource stewardship while ensuring capacity to meet current and future medical imaging needs	

(continued)

Table 3. (continued)

Type of action	Calls to action
Sustainable resources and environmental contamination <i>Refers to reducing the reliance on finite resources and reduction of GHG emissions and environmental contamination related to radiology equipment and supplies</i>	<ul style="list-style-type: none"> • Governments to anticipate challenges to medical device, helium, contrast media, and other supply chains as a result of national and international climate disruption, and to ensure institutional purchasing is coordinated with decarbonization efforts to increase use of reusable items where appropriate, recycle and reuse supplies when feasible, maximize value through bulk purchasing when feasible⁴³ • Radiologists and radiology departments to reduce waste and environmental waterbody contamination of CT and MRI contrast media by switching from single use to multi-patient dose contrast delivery systems⁴⁴ • Radiologists and radiology departments to reduce unnecessary utilization of CT and MRI contrast media through implementation of low- or no-contrast protocols and virtual contrast enhanced imaging when appropriate²³ • Radiologists and radiology departments to implement policies to guide appropriate use of ultrasound-enhancing agents and provide education on their direct environmental impact as fluorinated gases with high global warming potentials⁴⁵ • Radiologists and radiology departments to implement policies to reduce the environmental impact of administered radiopharmaceuticals and minimize radioactive waste in nuclear medical imaging⁴⁶ • Vendors, radiologists, and procurement teams to develop and prioritize low- or no-helium MRI systems and processes to recycle and recapture helium used for cooling²⁰ • Radiology departments to promote sustainable anaesthetic practices such as eliminating desflurane use and installing anaesthetic gas capture and reuse systems when anaesthesia is required in medical imaging⁴⁷ • Radiology departments, industry, and health authorities to collaborate on the implementation and evaluation of mobile imaging solutions to reduce patient travel and increase imaging access to imaging in rural and remote communities, such as robotic ultrasound and mobile MRI^{14,48} • Radiology departments to evaluate potential trade-offs with mobile imaging with respect to reduced emissions related to patient travel but potentially higher emissions related to operation and transport of mobile imaging equipment and teams¹³ • Governments, health authorities, and radiology departments to develop standards for remote scanning by technologists to reduce the need for patient and technologist travel to and from remote areas, including capacity for real time remote supervision by radiologists when appropriate • Vendors, radiologists, and scientists to collaborate on development, evaluation, and implementation of artificial intelligence (AI)-tools to improve sustainability in radiology and evaluate trade-offs with respect to the energy and GHG emissions required to develop AI models²³
Environmentally sustainable development and use of technology in radiology <i>Refers to innovation, development, and implementation of environmentally sustainable medical imaging technology including mobile and robotic imaging</i>	

Acknowledgments

Mark Given, Andra Morrison, Margorie Gonzalez, Pete Tonseth.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of

this article: KH: Co-Chair CAR Environmental Sustainability Working Group; Deputy Lead Sustainability, JDMI; Chair, ISMRM Environmental Sustainability Working Group; Member, RSNA Sustainability Task Force; Member, AUR Sustainability Committee; Associate Editor, Canadian Association of Radiologists Journal. AH: Regional Department Head, Medical Imaging VCH and PHC; Vice-President, Canadian Association of Radiologists.

MJB: Co-Chair CAR Environmental Sustainability Working Group; Co-Chair BC Cancer Planetary Health Unit; Member, AUR Sustainability Committee; Member, Canadian Association of Physicians for the Environment.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Kate Hanneman <https://orcid.org/0000-0002-3077-2218>
 Candyce Hamel <https://orcid.org/0000-0002-5871-2137>
 Maura J. Brown <https://orcid.org/0000-0001-5232-4494>

References

1. Eckelman MJ, Sherman JD, MacNeill AJ. Life cycle environmental emissions and health damages from the Canadian healthcare system: an economic-environmental-epidemiological analysis. *PLoS Med.* 2018;15(7):e1002623. doi:10.1371/journal.pmed.1002623
2. Brown M, Schoen JH, Gross J, Omary RA, Hanneman K. Climate change and radiology: impetus for change and a toolkit for action. *Radiology.* 2023;307(4):e230229. doi:10.1148/radiol.230229
3. Picano E, Mangia C, D'Andrea A. Climate change, carbon dioxide emissions, and medical imaging contribution. *J Clin Med.* 2022;12(1):215. doi:10.3390/jcm12010215
4. Kouropoulos G. A predictive model for the estimation of carbon dioxide emissions of magnetic resonance imaging units and computed tomography scanners. *J Urban Environ Eng.* 2019;12:172-187. doi:10.4090/juee.2018.v12n2.172-187
5. Hanneman K, McKee H, Nguyen ET, Panet H, Kielar A. Greenhouse gas emissions by diagnostic imaging modality in a hospital-based radiology department. *Can Assoc Radiol J.* Published online May 14, 2024. doi:10.1177/08465371241253314
6. McKee Brown M, Kim H, et al. Planetary health and radiology: why we should care and what we can do. *Radiology.* 2024;311(1):e240219. doi:10.1148/radiol.240219
7. The Intergovernmental Panel on Climate Change (IPCC). Common enabling factors and constraints for adaptation and mitigation responses. Published 2024. Accessed February 25, 2024. https://ar5-syr.ipcc.ch/topic_adaptation.php
8. Friel S, Arthur M, Frank N. Power and the planetary health equity crisis. *Lancet.* 2022;400(10358):1085-1087. doi:10.1016/s0140-6736(22)01544-6
9. Bluth EI, Kay D, Smetherman D, et al. Managing in a catastrophe: radiology during Hurricane Katrina. *AJR Am J Roentgenol.* 2007;188(3):630-632. doi:10.2214/ajr.06.1464
10. Canadian Medical Association. Environmentally sustainable health systems in Canada. Published 2022. Accessed April 1, 2024. <https://policybase.cma.ca/viewer?file=%2Fmedia%2FPolicyPDF%2FPD23-02.pdf#page=1>
11. Brown M, Snelling E, Alba MD, Ebrahimi G, Forster BB. Quantitative assessment of computed tomography energy use and cost savings through overnight and weekend power down in a radiology department. *Can Assoc Radiologists J.* 2022;74(2):298-304. doi:10.1177/08465371221133074
12. Sutton RT, Dhillon-Chattha P, Kumagai J, Pitamber T, Meurer DP. System configuration evaluation for a province-wide clinical information system using the eSafety Checklist. *Appl Clin Inform.* 2023;14(4):735-742. doi:10.1055/s-0043-1771392
13. Adams SJ, Burbridge B, Chatterson L, Babyn P, Mendez I. A telerobotic ultrasound clinic model of ultrasound service delivery to improve access to imaging in rural and remote communities. *J Am Coll Radiol.* 2022;19(1):162-171. doi:10.1016/j.jacr.2021.07.023
14. DesRoche CN, Johnson AP, Hore EB, et al. Feasibility and cost analysis of portable MRI implementation in a remote setting in Canada. *Can J Neurol Sci.* Published online July 12, 2023. doi:10.1017/cjn.2023.250
15. Ibrahim F, Cadour F, Washburn AC, et al. Energy and greenhouse gas emission savings associated with implementation of an abbreviated cardiac MRI protocol. *Radiology.* 2024;311(1):e240588. doi:10.1148/radiol.240588
16. Deivanayagam TA, English S, Hickel J, et al. Envisioning environmental equity: climate change, health, and racial justice. *Lancet.* 2023;402(10395):64-78. doi:10.1016/s0140-6736(23)00919-4
17. Green S, Labine N, Luo OD, et al. Planetary health in CanMEDS 2025. *Can Méd Educ J.* 2023;14(1):46-49. doi:10.36834/cmej.75438
18. Arepally A, Omary RA, Vandenberg MP. Scanning the planet: radiology's grand opportunity to address climate change. *J Am Coll Radiol.* 2022;19(1):217-219. doi:10.1016/j.jacr.2021.08.031
19. Confalonieri UE, Menezes JA, de Souza CM. Climate change and adaptation of the health sector: the case of infectious diseases. *Virulence.* 2015;6(6):554-557. doi:10.1080/21505594.2015.1023985
20. Chaban YV, Vosshenrich J, McKee H, et al. Environmental sustainability and MRI: challenges, opportunities, and a call for action. *J Magn Reson Imaging.* 2023;59(4):1149-1167. doi:10.1002/jmri.28994
21. Hanneman K, Araujo-Filho JAB, Nomura CH, Jakubisin J, Moy L. Climate change and sustainability. *Radiology.* 2023;307(4):e230903. doi:10.1148/radiol.230903
22. US Government ENERGY STAR. ENERGY STAR® program requirements product specification for medical imaging equipment. Published 2024. Accessed April 4, 2024. https://www.energystar.gov/products/spec/medical_imaging_equipment_version_1_0_pd
23. Doo FX, Vosshenrich J, Cook TS, et al. Environmental sustainability and AI in radiology: a double-edged sword. *Radiology.* 2024;310(2):e232030. doi:10.1148/radiol.232030
24. Canadian Medical Association. Why Canada needs a net-zero health system. Published 2024. Accessed April 1, 2024. <https://www.cma.ca/our-focus/net-zero-emissions-health-system/why-canada-needs-net-zero-health-system>
25. International Electrotechnical Commission. Good refurbishment practices for medical imaging equipment. IEC 63077 ED1. Published online 2019. Accessed February 1, 2024. <https://web-store.iec.ch/publication/61821>
26. Woolen SA, Becker AE, Martin AJ, et al. Ecodesign and operational strategies to reduce the carbon footprint of MRI for energy cost savings. *Radiology.* 2023;307(4):e230441. doi:10.1148/radiol.230441

27. Data Synergy. PowerMAN reduces NHS Hospital IT energy costs. Published 2023. Accessed January 15, 2024. <https://www.datasynergy.co.uk/casestudies/sthnhs.aspx>

28. Esmaeili A, McGuire C, Overcash M, Ali K, Soltani S, Twomey J. Environmental impact reduction as a new dimension for quality measurement of healthcare services. *Int J Health Care Qual Assur.* 2018;31(8):910-922. doi:10.1108/ijhcqa-10-2016-0153

29. MacNeill AJ, Lillywhite R, Brown CJ. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. *Lancet Planet Health.* 2017;1(9):e381-e388. doi:10.1016/s2542-5196(17)30162-6

30. Doo FX, Kulkarni P, Siegel E, et al. Economic and environmental costs of cloud for medical imaging and radiology artificial intelligence. *J Am Coll Radiol.* 2024;21:248-256. doi:10.1016/j.jacr.2023.11.011

31. Delre A, Placa ML, Alfieri F, et al. Assessment of the European Union Green Public Procurement criteria for four product groups. Published 2022. Accessed April 1, 2024. <https://publications.jrc.ec.europa.eu/repository/handle/JRC127215>

32. GE Energy. Western wind and solar integration study. National Renewable Energy Lab. Published online 2010. doi:10.2172/981991

33. Thiel CL, Woods NC, Bilec MM. Strategies to reduce greenhouse gas emissions from laparoscopic surgery. *Am J Public Health.* 2018;108(S2):S158-S164. doi:10.2105/ajph.2018.304397

34. Dekker HM, Stroomberg GJ, Prokop M. Tackling the increasing contamination of the water supply by iodinated contrast media. *Insights Imaging.* 2022;13(1):30. doi:10.1186/s13244-022-01175-x

35. Azmal M, Kalhor R, Dehcheshmeh NF, Goharinezhad S, Heidari ZA, Farzianpour F. Going toward green hospital by sustainable healthcare waste management: segregation, treatment and safe disposal. *Health.* 2014;6(19):2632-2640. doi:10.4236/health.2014.619302

36. Davidson M, Kielar A, Tonseth RP, Seland K, Harvie S, Hanneman K. The landscape of rural and remote radiology in Canada: opportunities and challenges. *Can Assoc Radiol J.* 2024;75:304-312. doi:10.1177/08465371231197953

37. Patel KB, Gonzalez BD, Turner K, et al. Estimated carbon emissions savings with shifts from in-person visits to telemedicine for patients with cancer. *JAMA Netw Open.* 2023;6(1):e2253788. doi:10.1001/jamanetworkopen.2022.53788

38. Practice Greenhealth. Employee commute single occupancy vehicle rate reduction. Published 2020. Accessed January 1, 2024. https://practicegreenhealth.org/sites/default/files/upload-files/case_studies/seattle_childrens_-_employee_commute_case_study.pdf

39. Morissette R, Deng Z, Messacar D, et al. Working from home: potential implications for public transit and greenhouse gas emissions. Published 2021. Accessed January 3, 2023. <https://www150.statcan.gc.ca/n1/pub/36-28-0001/2021004/article/00005-eng.htm>

40. Alshqaqeq F, McGuire C, Overcash M, Ali K, Twomey J. Choosing radiology imaging modalities to meet patient needs with lower environmental impact. *Resour Conserv Recycl.* 2020;155:104657. doi:10.1016/j.resconrec.2019.104657

41. Davenport MS. Incidental findings and low-value care. *AJR Am J Roentgenol.* 2023;221(1):117-123. doi:10.2214/ajr.22.28926

42. Kjelle E, Andersen ER, Krokeide AM, et al. Characterizing and quantifying low-value diagnostic imaging internationally: a scoping review. *BMC Med Imaging.* 2022;22(1):73. doi:10.1186/s12880-022-00798-2

43. Grist TM, Canon CL, Fishman EK, Kohi MP, Mossa-Basha M. Short-, mid-, and long-term strategies to manage the shortage of iohexol. *Radiology.* 2022;304(2):289-293. doi:10.1148/radiol.2211183

44. Lindsey JS, Frederick-Dyer K, Carr JJ, Cooke E, Allen LM, Omary RA. Modeling the environmental and financial impact of multi-dose vs. single-dose iodinated contrast media packaging and delivery systems. *Acad Radiol.* 2023;30:1017-1023. doi:10.1016/j.acra.2022.12.029

45. Kang HJ, Lee JM, Yoon JH, Lee K, Kim H, Han JK. Contrast-enhanced US with sulfur hexafluoride and perfluorobutane for the diagnosis of hepatocellular carcinoma in individuals with high risk. *Radiology.* 2020;297(1):209017. doi:10.1148/radiol.2020209017

46. Aisyah Artiani PA, Rachmadetin J. Radioactive fission waste from molybdenum-99 production and proliferation risks. *IOP Conf Ser Earth Environ Sci.* 2021;927(1):012041. doi:10.1088/1755-1315/927/1/012041

47. Devlin-Hegedus JA, McGain F, Harris RD, Sherman JD. Action guidance for addressing pollution from inhalational anaesthetics. *Anaesthesia.* 2022;77(9):1023-1029. doi:10.1111/anae.15785

48. Adams SJ, Penz E, Imeah B, et al. Economic evaluation of telerobotic ultrasound technology to remotely provide ultrasound services in rural and remote communities. *J Ultrasound Med.* 2023;42(1):109-123. doi:10.1002/jum.16070