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Prostate cancer (PCa) is the most common cancer among men, 
and the incidence of low-risk disease (ie, International Society 

of Urological Pathology [ISUP] grade < 2) is high (1). Men with 
low-risk PCa have a substantial risk of overdiagnosis and over-
treatment, making active surveillance an increasingly adopted 
approach for this group (2,3). In addition to proper inclusion 
criteria, effective follow-up is equally vital. The ideal follow-up 
strategy aims to detect high-risk disease early while minimizing 
unnecessary examinations (4). Current strategies to reduce un-
necessary biopsies include the use of an MRI-first approach, with 
selective biopsies for patients with MRI examinations showing 
findings positive for PCa (5). A combination of MRI and pros-
tate-specific antigen (PSA) density has shown potential to further 
reduce the need for biopsies (6).

Risk calculators could play an important role in management 
of PCa by estimating personalized future risk levels that guide 
the timing and intensity of subsequent follow-up examinations 
(7). Although several established clinical tools exist for the pri-
mary diagnosis of PCa, such as the Prostate Cancer Prevention 
Trial (PCPT) version 2 risk calculator (8), only a few studies have 
explored tools for future risk of progression. One promising tool 
for estimating PCa risk is the European Randomized Study of 
Screening for Prostate Cancer (ERSPC) future-risk calculator, 

which assesses PCa risk after 4 years (9). Unfortunately, currently 
available risk calculators have limited reliability because of their 
dependence on clinical variables with high variability.

Although including MRI information into risk models could 
improve the accuracy and reliability of risk assessment tools, this 
is challenging because of the lack of image processing capabilities 
in clinical tools (10,11). Prostate Imaging Reporting and Data 
System (PI-RADS) (12) scores could serve as an indirect way of 
including MRI information, but these scores also demonstrate 
considerable interreader variation (13,14), which may hinder the 
reliability of risk estimates.

Deep learning (DL) models based on MRI features have 
the potential to enhance follow-up strategies by training them 
to capture patterns relevant to the risk of progression, and these 
models may offer more precise, patient-specific risk estimates for 
disease progression. Recent studies have demonstrated that DL 
imaging predictors in other cancer types, including breast cancer 
(15) and pancreatic cancer (16), are predictive of disease progres-
sion. However, to our knowledge, no previous study has explored 
this approach in the setting of PCa.

Therefore, the present study aimed to develop and validate 
a DL-based risk model that predicts the time to progression to 
clinically significant PCa (csPCa, defined as ISUP grade > 1) in 

Purpose:  To validate a deep learning (DL) model for predicting the risk of prostate cancer (PCa) progression based on MRI and clinical parameters and 
compare it with established models.

Materials and Methods:  This retrospective study included 1607 MRI scans of 1143 male patients (median age, 64 years; IQR, 59–68 years) undergoing MRI 
for suspicion of clinically significant PCa (csPCa) (International Society of Urological Pathology grade > 1) between January 2012 and May 2022 who were 
negative for csPCa at baseline MRI. A DL model was developed using baseline MRI and clinical parameters (age, prostate-specific antigen [PSA] level, 
PSA density, and prostate volume) to predict the time to PCa progression (defined as csPCa diagnosis at follow-up). Internal and external testing was per-
formed. The model’s ability to predict progression to csPCa was assessed by Cox regression analyses. Predictive performance of the DL model up to 5 years 
after baseline MRI in comparison with the European Randomized Study of Screening for Prostate Cancer (ERSPC) future-risk calculator, Prostate Cancer 
Prevention Trial (PCPT) risk calculator, and Prostate Imaging Reporting and Data System (PI-RADS) was assessed using the Harrell C-index. Optimized 
follow-up intervals were derived from Kaplan–Meier curves.

Results:  DL scores predicted csPCa progression (internal cohort: hazard ratio [HR], 1.97 [95% CI: 1.61, 2.41; P < .001]; external cohort: HR, 1.32 [95% 
CI: 1.14, 1.55; P < .001]). The model identified a subgroup of patients (approximately 20%) with risks for csPCa of 3% or less, 8% or less, and 18% or 
less after 1-, 2-, and 4-year follow-up, respectively. DL scores had a C-index of 0.68 (95% CI: 0.63, 0.74) at internal testing and 0.56 (95% CI: 0.51, 0.61) 
at external testing, outperforming ERSPC and PCPT (both P < .001) at internal testing.

Conclusion:  The DL model accurately predicted PCa progression and provided improved risk estimations, demonstrating its ability to aid in personalized 
follow-up for low-risk PCa.
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patients with low-risk PCa, based on MRI and clinical param-
eters. We also compared this model with the aforementioned 
ERSPC future-risk and PCPT risk calculators and PI-RADS 
classifications.

Materials and Methods

Study Design and Sample
This retrospective study included patients from two health care 
institutions in the Netherlands: Radboud University Medical 
Center (RUMC), Nijmegen, and Netherlands Cancer Insti-
tute (NKI), Amsterdam. The need for informed consent was 
waived by the respective institutional review board (RUMC: 
IRB 2016–3045; NKI: IRB 22–159).

Patients meeting the following criteria were included: (a) un-
derwent prostate MRI (referred to as “baseline MRI”); (b) were 
suspected of having PCa because of elevated PSA levels, abnor-
mal digital rectal examination findings, or lower urinary tract 
symptoms; and (c) underwent at least one subsequent biopsy or 
follow-up MRI 6 months after the baseline MRI. The exclusion 
criteria were as follows: (a) biopsy-confirmed csPCa before or 
within 6 months after the baseline MRI; (b) previous treatment 
for prostate cancer; (c) poor quality of the baseline MRI scan; (d) 
missing axial T2-weighted or diffusion-weighted imaging; and (e) 
positive (defined as PI-RADS score ≥ 3) follow-up MRI findings 
without histopathologic confirmation. Relevant clinical param-
eters, including PSA, PSA density, prostate volume, patient age, 
and baseline ISUP grade group, were extracted from patient files.

Multiple MRI examinations for a patient meeting inclusion 
and exclusion criteria were treated as distinct observations, with 

each additional scan serving as a new baseline for risk prediction. 
Figure 1 presents flow diagrams showing patient selection in both 
the internal and external cohorts, in accordance with Standards 
for Reporting of Diagnostic Accuracy Studies (17).

The study used the ISUP grade group derived from biopsy, 
prostatectomy, or transurethral resection of the prostate as the ref-
erence standard (1). PCa progression was defined as the detection 
of csPCa at follow-up histopathologic assessment. For patients 
without documented progression, data points were censored on 
the date of the last negative radiologic or histopathologic assess-
ment before the cutoff date. Follow-up was truncated at 5 years 
after MRI.

Imaging Protocol
All patients underwent biparametric or multiparametric MRI 
of the prostate. For each MRI examination, axial T2-weighted 
imaging, monoexponential apparent diffusion coefficient maps, 
and diffusion-weighted images with b value of 1400 sec/mm2 
or greater were extracted. Dynamic contrast-enhanced imag-
ing was excluded from this study because of its limited role in 
current prostate MRI guidelines (18,19). Detailed information 
regarding imaging parameters can be found in Table S1.

Time-to-Progression Prediction Models
We developed a novel DL model to predict PCa progression 
risk using baseline MRI and clinical parameters (ie, age, PSA, 
PSA density, and prostate volume). The model consisted of 
two main components. First, a U-Net model was used to au-
tomatically identify regions suspicious for PCa in the baseline 
MRI scans, generating heatmaps representing the likelihood 
of pathology-confirmed PCa lesions (ISUP grade ≥ 1) at a 
voxel level (20,21). These heatmaps, together with clinical 
variables and the time interval between MRI and follow-up, 
were passed to a DL classifier model, which was trained to 
predict, at the patient level, the likelihood of detecting csPCa 
following each patient’s respective progression or censoring 
time (9). The model was optimized by minimizing the binary 
cross-entropy between the predicted and target label. During 
inference, personalized risk scores were computed for a fixed 
4-year interval, facilitating long-term risk estimation. Because 
of the overall shorter follow-up period across the cohort, we 
chose to predict at 4 years; the sample size at this time period 
was sufficient for accurate predictions. 

On the basis of their predicted risk scores, patients were as-
signed to one of five risk categories (referred to as “DL risk 
groups”), aligning with established Likert-based scoring systems, 
such as PI-RADS and ISUP. To address variations in cohort con-
stitution affecting risk score distribution (eg, scanner parameters, 
institutional practices) and to optimize clinical utility (6), we 
used a dedicated 5% calibration set to establish institution-spe-
cific thresholds, grouping the remaining patients into five risk 
categories of similar size. Fivefold cross-validation was performed 
using the RUMC (internal) cohort to obtain predictions for each 
observation, enabling a well-powered internal test. External test-
ing was conducted using the NKI (external) cohort by averaging 
predictions from the five cross-validated models trained on inter-
nal data. Further details on data preprocessing, DL architecture, 
and training parameters are provided in Appendix S1.

Abbreviations
csPCa = clinically significant prostate cancer, DL = deep learning, 
ERSPC = European Randomized Study of Screening for Prostate 
Cancer, HR = hazard ratio, ISUP = International Society of Urolog-
ical Pathology, NKI = Netherlands Cancer Institute, PCa = prostate 
cancer, PCPT = Prostate Cancer Prevention Trial, PI-RADS = Pros-
tate Imaging Reporting and Data System, PSA = prostate-specific 
antigen, RUMC = Radboud University Medical Center  

Summary
The proposed deep learning model based on MRI and clinical char-
acteristics showed good performance in predicting progression from 
low-risk prostate cancer to clinically significant prostate cancer.

Key Points
	■ A deep learning (DL) model developed using baseline MRI and 

clinical data predicted progression of low-risk prostate cancer (PCa) 
to clinically significant PCa on both internal (hazard ratio [HR], 
1.97 [95% CI: 1.61, 2.41]; P < .001) and external (HR, 1.32 [95% 
CI: 1.14, 1.55]; P < .001) testing datasets.

	■ The DL model identified a subgroup (approximately 20% of pa-
tients) with progression risks for clinically significant PCa of 3% or 
less, 8% or less, and 18% or less after 1-, 2-, and 4-year follow-up, 
respectively.

	■ DL risk scores outperformed established clinical tools in predicting 
risk of progression to clinically significant PCa on the internal test-
ing dataset, with the highest C-index (0.68 [95% CI: 0.63, 0.74]).
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Our DL model was compared with established risk tools: ER-
SPC future-risk calculator (9) and PCPT risk calculator version 2 
(9,22). The PCPT risk calculator lacked suggested cutoff values, 
so we stratified PCPT risk scores into five equally sized bins to al-
low Kaplan–Meier analysis, with “PCPT risk 1” and “PCPT risk 
5” referring to the 20% lowest risk predictions and 20% high-
est risk scores, respectively. We also compared our model to PI-
RADS scores, following contemporary PI-RADS guidelines (18). 
The code is available at the following repository: https://github.
com/0xC4/mri-risk.

Outcomes
The primary outcome was the detection of progression to PCa 
with an ISUP grade of 2 or higher at follow-up histopathologic 
assessment. Optimized follow-up schedules were derived from 
Kaplan–Meier curves for each predictor’s risk groups. Inspired 
by established guidelines for follow-up after CT screening for 
lung cancer, we extracted follow-up times based on a 10% risk 
threshold for missing csPCa (7). This threshold was considered 
conservative in comparison to previously reported detection 
rates for csPCa at repeat biopsy of 13% (23). Secondary out-
comes included time-to-progression analyses for the detection 
of PCa with ISUP grade of 3 or higher.

Statistical Analysis
Baseline characteristics (including clinical parameters, PI-
RADS classification, and ISUP grades) were compared between 
patients with and without disease progression. The Harrell 
C-index was used to assess the predictive value for the risk of 
progression to csPCa of each predictor (DL risk scores, ERSPC 
future-risk scores, PCPT scores, and PI-RADS scores) in in-
ternal and external data (24). Differences in C-index between 
predictors were assessed for significance using the method of 
Kang et al (25). Cox proportional hazard models were fit to 

assess the predictor significance using a Wald test (26). ERSPC, 
PCPT, and DL scores were modeled as continuous parameters 
to preserve the granularity of the data. PI-RADS scores, in con-
trast, were modeled as categorical predictors to account for the 
potentially distinct effect that each category may have on the 
outcome. Continuous predictors were standardized before Cox 
model fitting to allow for meaningful effect size comparisons 
because the resulting exponentiated coefficient is the hazard 
ratio (HR) corresponding to a 1-SD increase in the predic-
tor. Cox models were adjusted for within-subject correlation 
using a marginal model with clustering by patient identifica-
tion number (27). Proportional hazards were assessed using the 
Schoenfeld test, and linearity was evaluated via a model fitted 
with restricted cubic splines (28). Analyses were repeated for 
the internal and external cohorts. All statistical analyses were 
performed using R software, 4.2.2 (R Foundation for Statistical 
Computing). P values less than .05 indicated a statistically sig-
nificant difference.

Results

Study Sample
After exclusion criteria were applied, 1607 MRI examinations 
from 1143 male patients (median age, 64 years; IQR, 59–68 
years) were included as baseline scans for risk assessment. Pro-
gression to csPCa was observed in 113 examinations (13.6%) 
in the internal cohort and 154 examinations (19.8%) in the 
external cohort. Median follow-up was 2.1 years (IQR, 1.2–3.2 
years) and 2.5 years (IQR, 1.4–4.2 years), respectively. Baseline 
characteristics are presented in Table 1.

Time to Progression to PCa with ISUP Grade 2 or Higher 
On the internal testing dataset, DL-based risk scores signifi-
cantly predicted PCa progression (HR, 1.97 [95% CI: 1.61, 

Figure 1:  Flow diagrams show patient selection in the (A) Radboud University Medical Center and (B) Netherlands Cancer Institute cohorts. csPCa = clinically signifi-
cant prostate cancer, PI-RADS = Prostate Imaging Reporting and Data System, TUR = transurethral resection of the prostate.

http://radiology-ic.rsna.org
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2.41]; P < .001). The C-index for DL was 0.68 (95% CI: 0.63, 
0.74) (Table 2), which was higher than that for ERSPC (C-in-
dex, 0.59 [95% CI: 0.52, 0.65]; P < .001) and PCPT (C-index, 
0.59 [95% CI: 0.52, 0.65]; P < .001). Kaplan–Meier curves for 
the internal testing show the time to progression over 5 years of 
follow-up (Fig 2).

During external testing, DL scores significantly predicted PCa 
progression (HR, 1.32 [95% CI: 1.14, 1.55]; P < .001). The 
C-index was 0.56 (95% CI: 0.51, 0.61) (Table 2). No evidence 
of differences was found when we compared the predictive per-
formance of DL risk scores to ERSPC (C-index, 0.61 [95% CI: 
0.56, 0.66]; P = .11) and PCPT (C-index, 0.56 [95% CI: 0.51, 
0.61]; P = .95). PI-RADS significantly outperformed DL scores 
(C-index, 0.63 [95% CI: 0.59, 0.68]; P = .01). Kaplan–Meier 
curves for the external testing show the time to progression over 5 
years of follow-up (Fig 3).

In the multivariable Cox regression analysis, both DL risk 
scores (HR, 1.66 [95% CI: 1.32, 2.09]; P < .001) and PI-RADS 
scores were significant predictors of PCa progression. Higher PI-
RADS scores were associated with an increased risk: PI-RADS 
score of 3 to 5 had HRs ranging from 2.18 to 7.96 (all P ≤ .048). 
In the external cohort, all models except PCPT were significantly 
associated with progression, with DL risk scores (HR, 1.28 [95% 
CI: 1.07, 1.53]; P = .006) and ERSPC (HR, 1.60 [95% CI: 1.09, 
2.36]; P = .02) showing significant associations, along with PI-
RADS scores of 4 and 5 (HRs, 2.44 and 3.14; P ≤ .007).

Optimized Follow-up Schedules
Figure 4 illustrates the optimized follow-up times for the in-
ternal evaluation. DL scores identified a patient stratum with 
the 48% lowest DL risk scores (DL risk group ≤ 2), who could 
delay follow-up for 3.5 years with less than 10% risk of missing 
progression to csPCa. Conversely, patients assigned to DL risk 
group of 5 or higher reached a greater than 10% risk of missed 
csPCa within 1 year.

On external testing, in the 15% of patients with the lowest 
DL-predicted risk (DL risk group ≤ 1), follow-up could be 
delayed for 2 years with less than 10% risk of missing progres-
sion to csPCa, and for 3 years at a risk of 13% (Fig 4). Patients 
assigned to DL risk group 2 or higher reached 10% risk after 
2 years.

Across both cohorts, the lowest DL risk group had progression 
risks for csPCa of 3% or less, 8% or less, and 18% or less after 1-, 
2-, and 4-year follow-up, respectively. Conversely, patients in DL 
risk group 5 reached a 29% or greater risk of csPCa progression 
within 3 years.

Risk of Progression to PCa with ISUP Grade 3 or Higher 
DL risk scores predicted the risk of progression to PCa with 
ISUP grade of  3 or higher in both the internal (HR, 1.87 [95% 
CI: 1.37, 2.55]; P < .001) and external (HR, 1.44 [95% CI: 
1.08, 1.93]; P = .01) cohorts, with C-index values of 0.70 (95% 
CI: 0.63, 0.78) and 0.57 (95% CI: 0.5, 0.65), respectively. Ka-

Table 1: Overview of the Patient Characteristics for the Internal and External Cohorts

Baseline Characteristic

RUMC NKI

Progression No Progression/Censored P Value Progression No Progression/Censored P Value

No. of patients 113 (13.6) 716 (86.4) 154 (19.8) 624 (80.2)
Age (y) 67 (62–70) 63 (59–67) <.001 66 (59–69) 64 (59–69) .48
PSA level (µg/L) 7.5 (5.5–10.6) 7.5 (5.5–11) .41 7.7 (5.4–10.2) 7.4 (4.9–11.1) .78
Prostate volume (mL) 57 (42–77) 74 (54–98) <.001 41 (33–55) 55 (40–80) <.001
PSA density (µg/mL2) 0.14 (0.09–0.19) 0.11 (0.08–0.15) <.001 0.18 (0.13–0.26) 0.13 (0.09–0.2) <.001
Time until event/censor (y) 1.7 (1.1–2.7) 2.2 (1.3–3.3) 2.1 (1.2–3.1) 2.8 (1.6–4.7)
PI-RADS score <.001 <.001
  1–2 58 (51.3) 594 (84.7) 11 (7.1) 136 (21.8)
  3 8 (7.1) 26 (3.8) 10 (6.5) 120 (19.2)
  4 29 (25.7) 69 (10.1) 73 (47.4) 211 (33.8)
  5 18 (15.9) 10 (1.5) 60 (39) 157 (25.2)
Baseline pathologic result <.001 .04
  ISUP grade < 1 23 (20.4) 83 (12.1) 23 (14.9) 148 (23.7)
  ISUP grade 1 33 (29.2) 35 (5.1) 123 (79.9) 423 (67.8)
  Not performed
(MRI-negative)

57 (50.4) 566 (82.8) 8 (5.2) 53 (8.5)

Follow-up pathologic result
  ISUP grade 2 67 (59.2) ... 111 (72.1) ...
  ISUP grade 3 22 (19.5) ... 31 (20.1) ...
  ISUP grade 4 15 (13.3) ... 5 (3.3) ...
  ISUP grade 5 9 (8) ... 7 (4.6) ...

Note.—Continuous parameters are reported as medians, with IQRs in parentheses, and were tested for significance using univariate Cox 
proportional hazards models; categorical parameters are reported as frequencies, with percentages in parentheses, and were tested for signifi-
cance using log-rank tests. ISUP = International Society of Urological Pathology, NKI = Netherlands Cancer Institute, PI-RADS = Prostate 
Imaging Reporting and Data System, PSA = prostate-specific antigen, RUMC = Radboud University Medical Center.

http://radiology-ic.rsna.org
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plan–Meier curves for time to progression for ISUP grade of 3 
or higher are included in Figure S2.

Discussion
We introduced a DL model based on clinical and MRI char-
acteristics to predict the risk of csPCa progression and demon-
strated potentially useful follow-up schedules for patients with 
low-risk PCa based on their predicted risk scores. The DL model 
achieved a promising performance on both internal (C-index, 
0.68 [95% CI: 0.63, 0.74]; HR, 1.97 [95% CI: 1.61, 2.41; 
P < .001]) and external (C-index, 0.56 [95% CI: 0.51, 0.61]; 
HR, 1.32 [95% CI: 1.14, 1.55; P < .001]) testing datasets in 
predicting disease progression in comparison to established clin-
ical risk calculators and PI-RADS. In our analysis, follow-up 
schedules based on DL risk scores would have allowed a sub-
stantial proportion of patients to forego follow-up for 3 years 
with 13% or lower risk of missing disease progression. External 
testing further demonstrated the model’s prognostic value and 
showed its generalizability across institutions. Our proposed 
method could help to reduce the overuse of biopsies and MRI 
by guiding follow-up frequency in low-risk PCa surveillance. To 
encourage further research, we provide public access to the code 
and trained DL models.

Our DL model showed robust prognostic value across inter-
nal and external cohorts. In contrast, existing clinical calculators 

(ERSPC and PCPT) predicted PCa progression only in the ex-
ternal cohort. Despite similar C-indexes among the predictors in 
external data, the DL risk scores exhibited stronger effect sizes for 
predicting PCa progression compared with the clinical calcula-
tors. This suggests that DL-based risk estimates could enhance the 
robustness of risk assessments across health care centers compared 
with existing tools. Although PI-RADS scores showed larger ef-
fect sizes for PCa progression than DL scores, their performance 
may have been inflated because of their inclusion in the reference 
standard for negative follow-up, known as verification bias.

DL scores also predicted the risk of progression to higher ISUP 
grading (ie, PCa with ISUP grade ≥ 3). This result is particularly 
relevant because some active surveillance protocols may allow pa-
tients who have PCa with an ISUP grade of 2 to enroll under spe-
cific conditions (eg, the absence of cribriform growth [4]) or use 
less strict criteria (eg, ISUP grade ≥ 3) to trigger active treatment 
(29,30). Furthermore, surveillance inclusion and termination cri-
teria are still subject to change. The model’s ability to estimate the 
risk of progression to PCa with ISUP grade 3 or higher suggests 
the utility of DL risk scores across diverse surveillance protocols.

The proposed DL model may also have value for optimizing 
patient selection by identifying patients at higher risk of devel-
oping aggressive disease. For example, our DL model identified 
patients at 29% or greater risk of csPCa progression within 3 
years. Whether patients with such a high risk of progression can 

Table 2: Univariable and Multivariable Cox Regression Results and C-Indexes for All Predictors

Variable

RUMC NKI

C-Index  HR  P Value C-Index HR P Value

Univariable
  DL scores 0.68 (0.63, 0.74) 1.97 (1.61, 2.41) <.001* 0.56 (0.51, 0.61) 1.32 (1.14, 1.55)† <.001*
  ERSPC future-risk calculator 0.59 (0.52, 0.65) 0.81 (0.65, 1.01) .06 0.61 (0.56, 0.66) 1.24 (1.07, 1.43)†‡ .004§

  PCPT risk calculator 0.59 (0.52, 0.65) 1.09 (0.92, 1.3) .25 0.56 (0.51, 0.61) 1.09 (0.91, 1.27) .27
  PI-RADS score 0.72 (0.67, 0.77)  0.63 (0.59, 0.68)
    1/2 ... Reference ... ... Reference ...
    3 ... 2.69 (1.25, 5.79) <.01║ ... 0.86 (0.34, 2.15) .75
    4 ... 4.32 (2.7, 6.9) <.001* ... 2.68 (1.4, 5.16) .003§

    5 ... 10.55 (5.92, 18.8) <.001* ... 3.67 (1.87, 7.19) <.001*
Multivariable
  DL scores ... 1.66 (1.32, 2.09) <.001* ... 1.28 (1.07, 1.53) .006§

  ERSPC future-risk calculator ... 0.96 (0.54, 1.7) .88 ... 1.6 (1.09, 2.36) .02║

  PCPT risk calculator ... 1.26 (0.76, 2.11) .37 ... 0.67 (0.44, 1.03) .07
  PI-RADS score   ...
    1/2 ... Reference ... ... Reference ...
    3 ... 2.18 (1, 4.74) .048║ ... 0.81 (0.33, 2.032) .67
    4 ... 3.35 (1.8, 6.24) <.001* ... 2.44 (1.27, 4.7) .007§

    5 ... 7.96 (3.96, 15.97) <.001* ... 3.14 (1.59, 6.19) <.001*

Note.—Hazard ratios represent the change in risk associated with a 1-SD increase in the predictors. Data in parentheses are 95% CIs. DL 
= deep learning, ERSPC = European Randomized Study of Screening for Prostate Cancer, HR = hazard ratio, PI-RADS = Prostate Imaging 
Reporting and Data System, PCPT = Prostate Cancer Prevention Trial.
* P < .001.
† Predictors for which proportional hazards assumptions were not met. 
‡ Predictors for which linearity assumptions were not met.
§ P < .01.
║ P < .05.
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be considered suitable candidates for active surveillance should 
be decided on an individual basis. Similarly, patients with PI-
RADS grade 5 lesions were at considerably higher risk of csPCa 
detection at follow-up in both cohorts (34% and 16% after 1.5 
years, respectively). Currently, none of the published surveillance 
guidelines incorporate MRI information in their eligibility crite-
ria (4,30,31). Thus, there may be an opportunity to refine inclu-
sion criteria and enhance overall patient outcomes.

We presented optimized follow-up times at a 10% risk level 
as an illustrative example, inspired by established guidelines for 
the follow-up of pulmonary nodules detected in lung cancer 
screening (7). Currently, no such agreed-upon cutoff exists for 
low-risk PCa management. By providing validated risk levels 
for different risk calculators, this research promotes discussions 
on the determination of achievable risk thresholds in low-risk 
PCa follow-up.

Our results are supported by previous works. In 2020, 
Wang et al (11) evaluated the PI-RADS score as a marker for 
PCa progression in 344 patients enrolled in active surveil-
lance in a single center and detected csPCa in 30% of patients 
classified as low-risk 4 years after baseline MRI. Likewise, a 
systematic review by Grivas et al in 2022 (32) revealed that 
higher reported MRI suspicion scores (ie, PI-RADS or Likert 
scores) were associated with an elevated csPCa detection rate 
at repeat biopsy following an initial negative biopsy result. We 
identified only one previous study that used artificial intelli-
gence for risk estimation (Jia et al, 2022 [10]), which showed 
that MRI radiomics predicted progression-free survival in 191 
patients with localized PCa over 3 years. Although these pre-
vious works provided evidence for the use of MRI for PCa 
risk estimation, they were limited by small cohort sizes and 
lacked comparisons with existing clinical tools. The present 

Figure 2:  Kaplan–Meier curves for time to prostate cancer progression in the internal (Radboud University Medical Center) cohort, stratified by (A) deep learning (DL) 
predictions, (B) Prostate Imaging Reporting and Data System (PI-RADS), (C) European Randomized Study of Screening for Prostate Cancer (ERSPC) future-risk calculator 
scores, and (D) Prostate Cancer Prevention Trial (PCPT) risk calculator scores. 
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of negative MRI results. In contrast, NKI typically conducted 
biopsies before the initial MRI being performed. However, the 
model’s consistent performance across both cohorts demon-
strates robustness to diverse clinical settings. Third, the broad 
time span for patient inclusion may have led to variability in 
MRI scan quality, reflecting technologic advancements. Fourth, 
although some assumptions for proportional hazards models 
were not met, these deviations can be considered minor, given 
that the primary aim was to assess predictor significance. De-
spite a suboptimal fit, all affected predictors showed statistical 
significance, and their P values would likely have been more 
noteworthy with correct modeling (28). Nonetheless, caution 
is advised in interpreting HRs from these models because they 
may produce erroneous predictions in certain intervals. Finally, 
our study sample and outcome differed from the intended pop-
ulation and outcome of the PCPT risk calculator. A lack of 
publicly available future risk models motivated our decision to 

study used a substantially larger patient sample and validated 
the results in a multicenter setting.

Our DL risk estimation may be adapted to clinical purposes 
beyond PCa progression. Most risk models are based on statistical 
regression and thus cannot incorporate imaging information di-
rectly without manually reducing the image data to features, such 
as through radiomics extraction or by using PI-RADS scores. We 
show that imaging data and clinical values can be combined in a 
multimodal DL model to generate useful risk predictions.

Our study had limitations. First, this study was retrospec-
tive and was thus subject to inherent biases associated with the 
collection of historical data. Second, there was considerable 
heterogeneity between the baseline pathology grades of the 
internal and external cohorts, which can be attributed to dif-
ferences in institutional standards. In general, RUMC avoided 
biopsies in patients without any visible lesions at MRI, resulting 
in a considerable proportion of patients included on the basis 

Figure 3:  Kaplan–Meier curves for time to prostate cancer progression in the external (Netherlands Cancer Institute) cohort, stratified by (A) deep learning (DL) predic-
tions, (B) Prostate Imaging Reporting and Data System (PI-RADS), (C) European Randomized Study of Screening for Prostate Cancer (ERSPC) future-risk calculator scores, 
and (D) Prostate Cancer Prevention Trial (PCPT) risk calculator scores.
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include this widely used model as a benchmark. In addition, 
its inclusion provides insights into the applicability of primary 
diagnostic tools for predicting the time to csPCa progression.

In conclusion, a DL-based prediction model was developed 
using MRI and clinical parameters and accurately predicted pro-
gression to csPCa up to 5 years after the MRI. DL-based risk es-
timates may help to individualize follow-up times to the risk level 
of the patient. Prospective studies with longer follow-up times are 
needed to confirm these results.
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