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Abstract

Objective To develop and validate machine learning (ML) models for diagnosing salivary gland adenoid cystic
carcinoma (ACC) in the salivary glands based on clinical and ultrasound features.

Methods A total of 365 patients with ACC or non-ACC of the salivary glands treated at two centers were enrolled in
training cohort, internal and external validation cohorts. Synthetic minority oversampling technique was used to
address the class imbalance. The least absolute shrinkage and selection operator (LASSO) regression identified optimal
features, which were subsequently utilized to construct predictive models employing five ML algorithms. The
performance of the models was evaluated across a comprehensive array of learning metrics, prominently the area
under the receiver operating characteristic curve (AUC).

Results Through LASSO regression analysis, six key features—sex, pain symptoms, number, cystic areas, rat tail sign,
and polar vessel—were identified and subsequently utilized to develop five ML models. Among these models, the
support vector machine (SVM) model demonstrated superior performance, achieving the highest AUCs of 0.899 and
0.913, accuracy of 90.54% and 91.53%, and F1 scores of 0.774 and 0.783 in both the internal and external validation
cohorts, respectively. Decision curve analysis further revealed that the SVM model offered enhanced clinical utility
compared to the other models.

Conclusions The ML model based on clinical and US features provide an accurate and noninvasive method for
distinguishing ACC from non-ACC.

Critical relevance statement This machine learning model, constructed based on clinical and ultrasound
characteristics, serves as a valuable tool for the identification of salivary gland adenoid cystic carcinoma.

Key Points
● Rat tail sign and polar vessel on US predict adenoid cystic carcinoma (ACC).
● Machine learning models based on clinical and US features can identify ACC.
● The support vector machine model performed robustly and accurately.
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Introduction
Adenoid cystic carcinoma (ACC) is an uncommon form
of cancer, representing just 1% of all head and neck
malignancies [1]. Predominantly affecting the salivary
glands, it ranks as the second most prevalent malignant
tumor in this region, following mucoepidermoid carci-
noma [2]. It is important to recognize that ACC exhibits
several malignant traits, such as locally invasive growth,
local recurrence, and distant metastasis [3, 4]. The stan-
dard treatment for ACC involves surgical intervention,
often accompanied by postoperative radiotherapy [5].
Notably, ACC has a high rate of distant metastasis,
affecting nearly half of patients [6]. The most common
sites for metastasis are the lungs, followed by bone and
liver, with some cases emerging as long as 10 to 20 years
post-diagnosis [7].
ACC presents a considerable diagnostic challenge and

has garnered extensive research attention due to a lack of
early clinical indicators, a low rate of early detection, a
tendency for distant metastasis, and a poor long-term
survival rate [8, 9]. Consequently, recognizing the dis-
tinctive behavior of ACC, an accurate preoperative ima-
ging diagnosis is essential for devising the best treatment

strategies. There is a pressing need to summarize the
imaging characteristics of ACC. However, the rarity of
this condition has resulted in most imaging studies being
limited to isolated case reports or small case series
[10, 11], which do not provide a comprehensive summary
of its imaging features.
Ultrasound (US) is a non-invasive imaging modality that

is extensively utilized for the detection of salivary gland
lesions [12]. However, the body of knowledge regarding
the use of US to identify ACC remains scarce. A profound
comprehension of the US features of ACC is not only
pivotal for distinguishing this specific malignancy from
other salivary gland tumors, but it is also vital for opti-
mizing clinical management.
Artificial intelligence methods employing machine

learning (ML) algorithms could offer improved predictive
insights for determining the best intervention strategies
for individual patients [13]. ML’s ability to discern com-
plex patterns from existing data has been shown to out-
perform conventional methods in forecasting medical
outcomes [14]. Notably, ML predictive models have been
extensively utilized in diagnosing, predicting treatment
efficacy, and managing prognoses for head and neck
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tumors [15–18]. Considering that ACC of the salivary
glands is uncommon, and its radiological features are not
well elucidated. Thus, this retrospective study aimed to
develop various predictive models for diagnosing salivary
gland ACC based on ML algorithms by analyzing clinical
and US characteristics of salivary gland tumors, and
subsequently assess their effectiveness.

Methods
Patients
The research protocol was granted approval by the
Ethics Committee of The First Affiliated Hospital of
Xiamen University (protocol number 2024-107) and the
Fujian Medical University Union Hospital (protocol
number 2024WSJK028). Due to the retrospective design
of the study, the committee exempted the need for
obtaining informed consent from the participants. The
study participants were enrolled from two different
medical centers (center 1: The First Affiliated Hospital
of Xiamen University; center 2: Fujian Medical Uni-
versity Union Hospital). Through a meticulous review of
surgical and pathological documentation, this study
conducted a comprehensive search of the electronic
databases of center 1 and center 2. The search targeted
patients who had been pathologically diagnosed with
ACC of the salivary glands between January 2015 and
July 2024. Additionally, this study searched the database
for patients diagnosed with non-ACC of the salivary
gland tumors from January 2022 to July 2024. Initially,
1150 patients were preliminarily identified for study
inclusion. The exclusion criteria were: lack of US ima-
ges, recurrent tumors, preoperative treatment history,
unsatisfactory quality of US images, and incomplete US
images of large lesions. Following these exclusion cri-
teria, 785 patients were subsequently eliminated from
the study. Ultimately, a total of 68 patients with ACC
(mean age 50.82 ± 13.03 years; range 23–82 years;
32 male, 36 female) and 297 patients with non-ACC
(mean age 47.70 ± 15.67 years; range 4–86 years; 190 male,
107 female) were included in the analysis. All patients
underwent surgical resection, and the pathological
findings were confirmed by experienced pathologists.
Moreover, relevant clinical information for each patient
was also extracted. To assess the potential impact of the
different time frames for ACC patient inclusion on
the study results, sensitivity analyses were conducted.
The analyses compared key clinical and US character-
istics between ACC patients diagnosed from January
2015 to December 2021 (n= 47) and those diagnosed
from January 2022 to July 2024 (n= 21). No significant
differences in key variables suggest that the time frame
selection for ACC patients had minimal impact on the
study outcomes.

In the next step, we employed random sampling to seg-
ment the research population from center 1 into a training
cohort, consisting of 33 ACC cases and 140 non-ACC cases,
and an internal validation cohort, comprising 15 ACC cases
and 59 non-ACC cases, in a 7:3 proportion. Moreover, the
research population from center 2 was designated as the
external validation cohort, which included 20 ACC cases
and 98 non-ACC cases. The workflow detailing the inclu-
sion and exclusion criteria is presented in Fig. 1.

US evaluation
All US examinations were performed by experienced
radiologists with over 5 years of previous experience in
performing neck US. The examinations were conducted
utilizing advanced US equipment, including a Philips
EPIQ7 (Philips Ultrasound), a GE Logiq E9 (GE Health-
care), and an Aixplorer ultrasound scanner (Supersonic
Imagine). These devices were all equipped with high-
resolution linear array probes, with frequency ranging
from 6 to 15MHz. Patients were positioned supine, with
their necks fully exposed and heads tilted to the con-
tralateral side, which allowed for the thorough scanning of
various sections of both the parotid and submandibular
gland regions. The clearest and most comprehensive US
images were then obtained and recorded.
The US assessments meticulously documented various

characteristics of the lesions, including size (recorded as the
maximum length), number, border, shape, heterogeneity,
echo, presence of cystic areas, calcification, degree of
internal vascularity (grade 0, no visible tumor vessels;
grade 1, consistent detection of 1 or 2 separate vessels;
grade 2, consistent detection of 3 to 5 separate visible ves-
sels; and grade 3, more than 5 separate visible vessels) [19],
and presence or absence of rat tail sign and polar vessel. The
rat tail sign was defined as a thin tail-like hypoechoic pattern
connected to one side of the tumors (Fig. 2). The polar
vessel was defined as a dominant vessel with or without
branches penetrating the tumors in color Doppler flow
imaging (Fig. 3). All US images were independently assessed
by two senior radiologists, each with over 10 years of clinical
experience, who were unaware of the histological pathology
findings. In instances of disagreement, a third radiologist
with equivalent experience was invited to arbitrate the
final decision.

Evaluation of interobserver reliability
Two radiologists with 5–10 years of clinical experience
interpreted the US characteristics of all patients in a
double-blind manner and conducted a Kappa consistency
test on the results. The classification criteria for the con-
sistency test results are as follows: 0.0 for poor agreement,
0.01–0.20 for slight agreement, 0.21–0.40 for fair agree-
ment, 0.41–0.60 for moderate agreement, 0.61–0.80 for
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substantial agreement, and 0.81–0.99 for excellent agree-
ment, with perfect agreement equating to 1.0.

Oversampling
To address the challenge of dataset imbalance in our
research, we employed the synthetic minority oversampling

technique (SMOTE) [20] on the training cohort. This
technique generates synthetic data that mirrors the struc-
ture of the original data from the minority class. Conse-
quently, we produced a balanced dataset, which we refer to
as the SMOTE-training cohort, enriched with SMOTE-
generated samples.

Fig. 2 The rat tail sign is depicted as a thin tail-like hypoechoic pattern connected to one side of the tumor. A Schematic diagram. B Corresponding
ultrasound image

Fig. 1 Analytic flowchart detailing cohort selection and exclusion criteria of the study. ACC, adenoid cystic carcinoma; US, ultrasound
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Feature selection, model development, and validation
We utilized the least absolute shrinkage and selection
operator (LASSO) regression [21] on the SMOTE-
training dataset (n= 280) to pinpoint the most effective
clinical and US features. The penalty parameter was fine-
tuned using a 10-fold cross-validation approach. The
features selected by LASSO regression were then incor-
porated into five different ML algorithms: logistic
regression (LR), support vector machine (SVM), decision
tree (DT), random forest (RF), and extreme gradient
boosting (XGBoost) to develop predictive models. The
performance of these models was validated through an
internal validation cohort and an external validation
cohort. Hyperparameter settings for the various ML
models are detailed in Supplementary Table 1. Model
performance was assessed through a comprehensive set of
metrics, including the area under the curve (AUC) from
receiver operating characteristic (ROC) analysis, sensi-
tivity, specificity, accuracy, positive predictive value (PPV),
negative predictive value (NPV), F1 score, confusion
matrix analysis, and decision curve analysis (DCA). To
compare the AUCs across different models, we applied
the DeLong test. Additionally, we conducted 10-fold
cross-validation on the SMOTE-training cohort for the
optimal model to further assess its performance.

Statistical analysis
In our statistical analysis, we utilized a variety of soft-
ware packages, including IBM SPSS Statistics (Version
22.0; https://www.ibm.com/spss), R (Version 4.4.1;
https://www.r-project.org), and Python (Version 3.7.0;

https://www.python.org/). We applied tests for normal
distribution and homogeneity of variance to all quanti-
tative variables. Descriptive statistics were presented as
means ± standard deviations for variables with a normal
distribution, and as medians and ranges for those that
were not normally distributed. Qualitative variables were
analyzed using the chi-square test and Fisher’s exact test.
For quantitative variables, we employed independent
samples t-tests for normally distributed data and
Kruskal–Wallis H tests for data with a skewed dis-
tribution. The threshold for statistical significance was
set at p < 0.05, considering two-tailed tests. For the R
environment, all necessary packages can be downloaded
https://cran.r-project.org/web/packages/.

Results
Baseline characteristics
The two radiologists achieved substantial to excellent
agreement across all US features, with Kappa values
ranging from 0.778 to 0.908 (Supplementary Table 2).
Table 1 summarizes the baseline information for all
patients in the study. There were no statistically sig-
nificant differences in any characteristics among the three
different cohorts. As shown in Table 2, significant dif-
ferences between ACC and non-ACC were observed for
sex, location, pain symptoms, border, shape, hetero-
geneity, cystic areas, rat tail sign, and polar vessel in the
training cohort; for pain symptoms, border, cystic areas,
rat tail sign, and polar vessel in the internal validation
cohort; and for sex, location, cystic areas, rat tail sign,
and polar vessel in the external validation cohort. No

Fig. 3 The polar vessel is depicted as a dominant vessel penetrating the tumor in color Doppler flow imaging. A, B Schematic diagram (A) and
corresponding ultrasound image (B) illustrate the polar vessel as a dominant vessel without branches. C, D Schematic diagram (C) and corresponding
ultrasound image (D) illustrate the polar vessel as a dominant vessel with branches
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statistically significant differences were observed between
ACC and non-ACC for other characteristics (p > 0.05). To
further illustrate the US features of ACC, the US images
of ACC are displayed in Supplementary Fig. 1.

Histological types of patients with salivary gland tumors
A detailed presentation of the histological types of
patients with salivary gland tumors and the presence of
the rat tail sign and polar vessel in each pathological
subtype is provided in Table 3. Of 365 patients with
salivary gland tumors, there were 68 ACC and 297 non-
ACC (120 pleomorphic adenoma, 78 Warthin tumor, 19
basal cell adenoma, 15 mucoepidermoid carcinoma, 7
acinar cell carcinoma, 6 salivary duct carcinoma, 6 car-
cinoma ex pleomorphic adenoma, 10 lymphoma, 10 sali-
vary gland metastases, and 26 others). Statistically
significant differences were noted in the US character-
istics of the rat tail sign and polar vessel between ACC and
the diverse non-ACC pathological types (all p < 0.001).

Clinical and US characteristics in the SMOTE-training cohort
Table 4 presents a comprehensive overview of the clinical
and US characteristics of patients in the SMOTE-training
cohort. Significant differences between the groups were
observed in terms of sex, lesion location, pain symptoms,
number, border, shape, heterogeneity, cystic areas, rat tail
sign, and polar vessel (p < 0.05). No statistically significant

differences were observed between the groups for other
characteristics (p > 0.05).

Feature selection and model development
Through LASSO regression analysis in the SMOTE-
training cohort, six features were identified, comprising
two clinical characteristics (sex, pain symptoms) and four
US features (number, cystic areas, rat tail sign, and polar
vessel). The optimal regularization parameter λ was
determined to be 0.041, with a log(λ) value of −3.207
under the criterion of 1 standard error (Fig. 4). Subse-
quently, various ML-based predictive models were con-
structed utilizing the selected six features.

The discrimination performance of the different model
The ROC curves for the models in the SMOTE-training
cohort, internal validation cohort, and external validation
cohort are depicted in Fig. 5A–C. Table 5 presents the
performance of various predictive models in both the
internal and external validation cohorts, while Supple-
mentary Figs. 2 and 3 display the corresponding confusion
matrices for different predictive models in the internal
and external validation cohorts. The current analysis
reveals that the AUC ranges for the five ML models in the
internal and external validation cohorts are 0.801–0.899
and 0.854–0.913, respectively. The SVM model per-
formed the best in both the internal and external

Table 1 Baseline characteristics of patients

Characteristics Training cohort

(n= 173)

Internal validation cohort

(n= 74)

External validation cohort

(n= 118)

p-value

Group (ACC/non-ACC) 33/140 15/59 20/98 0.829

Age, years (mean ± SD) 49.54 ± 14.73 46.66 ± 15.72 47.05 ± 15.68 0.252

Sex (male/female) 112/61 41/33 69/49 0.317

Location (PG/SMG) 132/41 52/22 93/25 0.398

Smoking history (absence/presence) 101/72 50/24 71/47 0.393

Pain symptoms (absence/presence) 154/19 68/6 100/18 0.296

Size, cm (mean ± SD) 2.81 ± 1.03 2.61 ± 0.98 2.58 ± 1.22 0.154

Number (one/multiple) 158/15 66/8 104/14 0.660

Border (clear/unclear) 146/27 66/8 106/12 0.333

Shape (regular/irregular) 100/73 34/40 67/51 0.207

Heterogeneity (homogeneous/

heterogeneous)

94/79 39/35 64/54 0.970

Echo (hypoechoic/isoechoic or

hyperechoic)

166/7 69/5 116/2 0.182

Cystic areas (absence/presence) 87/86 39/35 71/47 0.245

Calcification (absence/presence) 159/14 70/4 110/8 0.742

Vascularity (grade 0–1/grade 2–3) 60/113 34/40 49/69 0.206

Rat tail sign (absence/presence) 149/24 65/9 105/13 0.765

Polar vessel (absence/presence) 141/32 61/13 104/14 0.299

ACC adenoid cystic carcinoma, PG parotid gland, SMG submandibular gland
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validation cohorts, with pairwise comparisons of AUCs
between different predictive models shown in Supple-
mentary Figs. 1F and 2F. The SVM model, using 10-fold
cross-validation in the SMOTE-training cohort, achieved
average AUCs of 0.893 ± 0.027 (Supplementary Fig. 4).
Furthermore, we assessed the clinical value of these
models; the DCA indicates (Fig. 5D–F) that for the dis-
crimination between ACC and non-ACC, the SVM model
provided a higher overall net benefit compared to other
models across most reasonable threshold probability

ranges in both the internal and external validation
cohorts.

Discussion
ACC accounts for 25% of malignant tumors in the major
salivary glands and 50% in the minor salivary glands [22].
Despite its generally indolent growth pattern, ACC has an
unfavorable prognosis, attributable to its propensity for
diffuse invasion, frequent local recurrence, and a high rate
of distant metastasis [3, 4]. As a result, an accurate

Table 3 The presence of rat tail sign and polar vessel in different histologic types of patients with salivary gland tumors

Types Patients (n= 365) Rat tail sign (n= 46) Polar vessel (n= 59) p-valuea p-valueb

Adenoid cystic carcinoma 68 30 (44.1%) 42 (61.8%)

Nonadenoid cystic carcinoma

Pleomorphic adenoma 120 6 (5.0%) 7 (5.8%) < 0.001* < 0.001*

Warthin tumor 78 5 (6.4%) 6 (7.7%) < 0.001* < 0.001*

Basal cell adenoma 19 1 (5.3%) 1 (5.3%) < 0.001* < 0.001*

Mucoepidermoid carcinoma 15 1 (6.7%) 0 (0%) < 0.001* < 0.001*

Acinar cell carcinoma 7 0 (0%) 1 (14.3%) < 0.001* < 0.001*

Salivary duct carcinoma 6 0 (0%) 0 (0%) < 0.001* < 0.001*

Carcinoma ex pleomorphic adenoma 6 0 (0%) 0 (0%) < 0.001* < 0.001*

Lymphoma 10 1 (10.0%) 0 (0%) < 0.001* < 0.001*

Salivary gland metastases 10 1 (10.0%) 1 (10.0%) < 0.001* < 0.001*

Others 26 1 (3.9%) 1 (3.9%) < 0.001* < 0.001*

Data are presented as numbers (percentages)
* Statistically significant at p < 0.05
a p-value for the statistical test comparing the presence of rat tail sign with adenoid cystic carcinoma
b p-value for the statistical test comparing the presence of polar vessel with adenoid cystic carcinoma

Table 4 Comparison of patients’ clinical and US characteristics between ACC and non-ACC in the SMOTE-training cohort

Characteristics ACC (n= 140) Non-ACC (n= 140) p-value

Age, years (mean ± SD) 48.56 ± 13.07 49.74 ± 14.97 0.484

Sex (male/female) 65/75 97/43 < 0.001*

Location (PG/SMG) 87/53 112/28 < 0.001*

Smoking history (absence/presence) 85/55 83/57 0.807

Pain symptoms (absence/presence) 112/28 130/10 0.002*

Size, cm (mean ± SD) 2.87 ± 1.13 2.82 ± 0.98 0.690

Number (one/multiple) 137/3 126/14 0.006*

Border (clear/unclear) 107/33 126/14 0.002*

Shape (regular/irregular) 71/69 88/52 0.040*

Heterogeneity (homogeneous/heterogeneous) 60/80 83/57 0.006*

Echo (hypoechoic/isoechoic or hyperechoic) 136/4 134/6 0.520

Cystic areas (absence/presence) 120/20 60/80 < 0.001*

Calcification (absence/presence) 125/15 131/9 0.200

Vascularity (grade 0–1/grade 2–3) 43/97 47/93 0.609

Rat tail sign (absence/presence) 104/36 129/11 < 0.001*

Polar vessel (absence/presence) 62/78 130/10 < 0.001*

US ultrasound, ACC adenoid cystic carcinoma, SMOTE synthetic minority oversampling technique, PG parotid gland, SMG submandibular
* Statistically significant at p < 0.05
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Fig. 4 Feature selection employing LASSO Regression. A The LASSO tuning parameter (λ) was determined using a 10-fold cross-validation approach in
conjunction with the 1 standard error rule. The optimal λ values are denoted by the dotted vertical lines, with the specific selection of λ= 0.041, which
corresponds to a log(λ) of −3.207, indicated on the right. B The LASSO coefficient profiles were constructed for 16 clinical and ultrasound features. These
profiles were plotted against the selected log(λ) value, obtained from 10-fold cross-validation, culminating in the identification of six features with
substantial non-zero coefficients for final inclusion. LASSO, least absolute shrinkage and selection operator

Fig. 5 ROC curves and DCA of the different predictive models. ROC curves of the different models in the SMOTE-training (A), internal validation (B) and
external validation (C) cohorts. DCA of the different predictive models in the SMOTE-training (D), internal validation (E) and external validation (F) cohorts.
ROC, receiver operating characteristic curve; DCA, decision curve analysis; SMOTE, synthetic minority oversampling technique; AUC, area under curve; LR,
logistic regression; SVM, support vector machine; DT, decision tree; RF, random forest; XGBoost, extreme gradient boosting; CI, confidence interval
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preoperative imaging diagnosis is needed to determine the
nature of the tumor. Nevertheless, there has been limited
exploration of the US characteristics of ACC and the dis-
tinctions between ACC and other salivary gland tumors.
Therefore, this study seeks to provide valuable insights to
the existing body of knowledge in this field. In our study, we
developed a predictive model for preoperative classification
between ACC and non-ACC. By employing the LASSO
regression algorithm for feature selection, we identified six
key features and utilized a variety of ML algorithms to
develop and validate the predictive model. To our knowl-
edge, this study represents the largest sample size to date in
investigating the clinical and US characteristics of ACC in
the salivary glands. It is also the first study to employ ML
algorithms to construct predictive models that distinguish
ACC from non-ACC based on clinical and US features. In
both internal and external validation cohorts, the SVM
model demonstrated the highest predictive accuracy, with
AUC reaching 0.899 and 0.913, respectively. Furthermore,
the results from DCA indicated that the SVM model has a
more significant advantage in clinical application compared
to other models.
Regarding epidemiology and clinical characteristics,

ACC generally arises in the third to ninth decades, with an
average of the fifth decade, and exhibits a slight female
predominance [23, 24]. In the present study, the ratio of
women:men was 1.1 (36/32) for the patients with ACC,
with an average age of 50.82 years, which is consistent
with previous epidemiological studies. Previous research
has indicated that ACC in the major salivary glands is
more frequently located in the submandibular gland, and
submandibular gland ACC carries a worse prognosis than

other gland subsites [25]. In our study, a higher propor-
tion of ACC cases were located in the submandibular
gland when compared to non-ACC cases; however, the
proportion of cases in the parotid gland within the ACC
group was still higher than in the submandibular gland,
possibly due to an uneven distribution of the sample. In
addition, pain symptoms have been reported in associa-
tion with ACC in previous studies [26], and our study
found similar results, with a higher incidence of facial pain
symptoms in ACC patients compared to non-ACC
patients. Our study did not, however, show significant
differences in age and smoking history between ACC and
non-ACC patients.
In our study, regarding US features of ACC alone, most

lesions may exhibit diverse manifestations typical of sali-
vary gland malignancy [12], such as unclear borders,
irregular shapes, solid hypoechoic patterns, as well as
heterogeneous internal echoes. In comparison to non-
ACC, ACC is more likely to present with solitary lesions,
unclear borders, irregular shapes, heterogeneous internal
echoes, absence of cystic areas, and the presence of rat tail
sign and polar vessel. The analysis of interobserver
variability for these US characteristics revealed a high
degree of substantial and excellent agreement. Among the
68 cases of ACC, 30 showed the rat tail sign (44.1%, 30/
68), and 42 exhibited polar vessel (61.8%, 42/68). When
comparing ACC to other histological types of salivary
gland tumors, the presence of rat tail sign and polar vessel
was significantly different, underscoring their diagnostic
value. Conversely, characteristics such as lesion size, echo,
calcification and internal vascularity cannot be relied
upon for differential diagnosis.

Table 5 Diagnostic performance of different ML models in both the internal and external validation cohorts for distinguishing ACC
from non-ACC

AUC (95% CI) Sen (%) Spe (%) Acc(%) PPV (%) NPV (%) F1 score

Internal validation cohort (n= 74)

LR 0.876 (0.770–0.959) 80 (12/15) 77.97 (46/59) 78.38 (58/74) 48 (12/25) 93.88 (46/49) 0.6

SVM 0.899 (0.790–0.972) 80 (12/15) 93.22 (55/59) 90.54 (67/74) 75 (12/16) 94.83 (55/58) 0.774

DT 0.801 (0.649–0.924) 73.33 (11/15) 79.66 (47/59) 78.38 (58/74) 47.83 (11/23) 92.16 (47/51) 0.579

RF 0.833 (0.715–0.928) 73.33 (11/15) 79.66 (47/59) 78.38 (58/74) 47.83 (11/23) 92.16 (47/51) 0.579

XGBoost 0.833 (0.699–0.935) 80 (12/15) 77.97 (46/59) 78.38 (58/74) 48 (12/25) 93.88 (46/49) 0.6

External validation cohort (n= 118)

LR 0.908 (0.784–0.969) 80 (16/20) 81.63 (80/98) 81.36 (96/118) 47.06 (16/34) 95.24 (80/84) 0.593

SVM 0.913 (0.809–0.989) 90 (18/20) 91.84 (90/98) 91.53 (108/118) 69.23 (18/26) 97.83 (90/92) 0.783

DT 0.881 (0.668–0.935) 70 (14/20) 92.86 (91/98) 88.98 (105/118) 66.67 (14/21) 93.81 (91/97) 0.683

RF 0.854 (0.727–0.939) 80 (16/20) 91.84 (90/98) 89.83 (106/118) 66.67 (16/24) 95.74 (90/94) 0.727

XGBoost 0.878 (0.717–0.949) 100 (20/20) 60.2 (59/98) 66.95 (79/118) 33.9 (20/59) 100 (59/59) 0.506

Data in the parentheses are raw data
ML machine learning, ACC adenoid cystic carcinoma, LR logistic regression, SVM support vector machine, DT decision tree, AUC area under receiver operating
characteristics, CI confidence interval, Sen sensitivity, Spe specificity, Acc accuracy, PPV positive predictive value, NPV negative predictive value, RF random forest,
XGBoost extreme gradient boosting
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ACC is known for its propensity for perineural and
perivascular invasion, which is reflected in the high inci-
dence of local recurrence and the tendency for late-onset
distant metastasis observed clinically [27, 28]. Perineural
invasion (PNI), occurring asymptomatically in 40% of
ACC patients, necessitates high-resolution imaging for
preoperative assessment of nerve invasion pathways [29].
Magnetic resonance imaging has proven particularly
effective in detecting PNI, with key findings including fat
replacement around neural foramina, enlargement of
neural foramina, diffuse or nodular nerve thickening, and
nerve enhancement [30]. Hanna et al found that magnetic
resonance imaging detects PNI more sensitively than
computed tomography, with respective sensitivities of
100% and 88%, and recommended using pre- and post-
enhanced T1-weighted images and fat-saturated contrast-
enhanced T1-weighted images for visualizing PNI in head
and neck tumors [29]. PNI of ACC is a well-established
prognostic factor strongly associated with increased risk
of local recurrence [31]. Our imaging observations of the
rat tail sign may represent a distinctive feature indicative
of local invasion and PNI in ACC. This finding aligns with
the longitudinal tail sign identified by Wang et al [32] as a
characteristic CT feature of tracheal ACC, suggesting a
potential common imaging manifestation across different
anatomical sites. The consistency of these findings across
studies further underscores the aggressive behavior and
metastatic patterns of ACC. Additionally, the incidence of
perivascular invasion in ACC is notably high, reaching up
to 15%, and is associated with a high rate of pulmonary
metastasis [33]. The identification of polar vessels in our
study corroborates previous observations [10, 34], rein-
forcing the diagnostic significance of perivascular spread
patterns in salivary gland ACC. These unique imaging
features, including the rat tail sign and the polar vessel
appearance, provide valuable diagnostic clues that may
enhance the preoperative assessment and management
of ACC.
In this study, we employed a feature selection process

using LASSO regression analysis to further identify six
key features that have the most significant impact in
discriminating between ACC and non-ACC. These
include two clinical characteristics (sex, pain symptoms)
and four US features (number, cystic areas, rat tail sign,
and polar vessel). By decreasing the number of features,
we not only streamlined the model but also bolstered its
interpretability and broader applicability. The model was
further optimized through the determination of the ideal
regularization parameter λ via cross-validation, which
helped to reduce overfitting and enhance predictive pre-
cision [21].
In terms of predictive performance, the ML models

demonstrated AUC values ranging from 0.801 to 0.899 in

the internal validation cohort and from 0.854 to 0.913 in
the external validation cohort, indicating varying effec-
tiveness in distinguishing between ACC and non-ACC.
Our results indicate that the SVM is a powerful model with
strong generalization capabilities, achieving the highest
AUC (0.899 and 0.913, respectively), accuracy (90.54% and
91.53%, respectively), and F1 score (0.774 and 0.783,
respectively) in both internal and external validation
cohorts. The SVM algorithm excels at separating data by
projecting it into a higher-dimensional space and is capable
of managing non-linear complexities through the selection
of suitable kernel functions [35]. In building the model,
SVM upholds the principle of minimizing structural risk,
with the goal of achieving the lowest possible generalization
error [36]. DCA substantiated the clinical relevance of the
SVM model, showing that it offers greater overall net
benefit across a wide array of threshold probabilities in both
internal and external validation sets. This indicates that the
SVM model is more apt to accurately identify ACC, thus
enabling more knowledgeable surgical planning.
Despite the significance of our findings, it is important

to recognize several limitations inherent to our study.
First, the retrospective nature of the study may have
introduced potential selection bias. Second, the sample
size was relatively small. Although the number of patients
in this retrospective analysis exceeded that of many prior
studies, the rarity of ACC led to a limited sample size.
Consequently, future research should aim to include a
larger and more extensive cohort to more definitively
characterize the imaging features of ACC and provide
higher-level evidence for clinical application. Additionally,
the scans were conducted by sonographers with varying
levels of experience, and some failed to document the rat
tail sign and polar vessel due to a lack of awareness. Lastly,
our investigation was confined to conventional US char-
acteristics, and unfortunately, data from advanced US
techniques such as sonoelastography or contrast-
enhanced US were not fully available. Future studies
should endeavor to incorporate multimodal US features
to accurately distinguish ACC from non-ACC.
In conclusion, our research has confirmed that ML

models based on clinical and US features are indeed feasible
and promising for distinguishing ACC from non-ACC,
with the SVM model showing particular potential in
enhancing diagnostic accuracy. Recent advances in radio-
mics and deep learning have further demonstrated their
efficacy in salivary gland tumor diagnosis [16, 37–39],
highlighting their ability to improve tumor characterization
and automate feature extraction. Future studies should
focus on optimizing these models, integrating multimodal
datasets, and validating their clinical utility to maximize
patient benefits, while exploring AI’s broader applications
in ACC diagnosis and management.
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ACC Adenoid cystic carcinoma
AUC Area under curve
DCA Decision curve analysis
DT Decision tree
LASSO Least absolute shrinkage and selection operator
LR Logistic regression
ML Machine learning
NPV Negative predictive value
OR Odds ratio
PG Parotid gland
PNI Perineural invasion
PPV Positive predictive value
ROC Receiver operating characteristic
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XGBoost Extreme gradient boosting
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