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Abstract

Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor
ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intel-
ligence (Al) in interventional oncology has garnered significant attention. This narrative review describes the current state
of Al applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the
number of studies relevant to this topic recently. Investigators have attempted to use Al for various tasks, including automatic
segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality;
prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the Al-based prediction of treat-
ment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed
for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that
Al is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up.
However, most Al-based methods discussed in this review are still at the research stage, and few have been implemented in
clinical practice. To achieve widespread adoption of Al technologies in interventional oncology procedures, further research
on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various

Al technologies will be integrated into interventional oncology practices in the near future.
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Introduction

The applications of artificial intelligence (AI) in medicine
are rapidly advancing and becoming widespread. The field
of radiology is considered particularly well suited for incor-
porating Al technologies because of the high image-process-
ing capabilities of current AI models. Al has been applied to
various aspects of diagnostic radiology and nuclear medicine
across various imaging modalities and target organs [1-6].
Studies have shown that AI can be useful for lesion detec-
tion [7-10], differential diagnosis [11-15], and image qual-
ity improvement [16-21]. Furthermore, the application of
Al has been increasingly reported in the field of radiation
therapy, where it is used to support various tasks during
treatment, including preparation, delivery, and evaluation
[22].
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The application of Al is being explored also in interven-
tional radiology, a specialty that offers image-guided, mini-
mally invasive therapies [23, 24]. The literature has shown
the potential of Al-based tools for intraprocedural support
and pre/post-procedural assessment in various interventional
radiology fields, including neurointervention, aortic and
peripheral vascular intervention, and coronary intervention
[25, 26]. Interventional oncology, a subspecialty of inter-
ventional radiology, offers image-guided interventions for
malignant tumors, with Al-based technologies expected to
play a significant role. The key treatments in interventional
oncology include transarterial tumor embolization and
percutaneous tumor ablation for lesions in various organs
[27-32]. In these treatments, imaging is crucial at every
stage, from deciding on treatment indications to planning,
performing procedures, and post-treatment follow-up. Con-
sequently, interventional oncology may potentially benefit
from rapid advancements in Al-based image-processing
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technologies, leading to significant interest and an increase
in relevant studies. This review outlines the current research
on Al applications in interventional oncology based on the
latest literature.

Overview of literature

A literature search was conducted for this narrative review
in June 2024, using PubMed with the following terms:
“artificial intelligence,” “machine learning,” “deep learn-
ing,” or “neural network,” and “interventional oncology,”
“tumor ablation,” “radiofrequency ablation,” “microwave
ablation,” “cryoablation,” “embolization,” “chemoemboli-
zation,” or “radioembolization.” Notably, 90% (332/371) of
the articles identified in the search were published in 2020
or later, indicating a recent rapid increase in research on
this topic. We screened these articles and extracted relevant
studies for review, primarily focusing on those associated
with the clinical application of Al in interventional oncology
and excluding those that solely employed animal experimen-
tal data or focused on Al methodologies. Additionally, we
reviewed several relevant articles found through a manual
search of the citations in the reviewed articles or through
personal communication.

In the reviewed studies, the application of Al has been
attempted in various tasks, including automatic segmen-
tation of organs, tumors, and treatment areas; treatment
simulation; improvement of intraprocedural image quality;
prediction of treatment outcomes; and detection of post-
treatment recurrence (Fig. 1). Among these, the prediction
of treatment outcomes has been the most studied. From a
technical perspective, the investigators have used deep and
conventional machine learning, sometimes comparing these
approaches. Here, “conventional machine learning” refers to
the machine learning algorithms that have been widely used
since the time before the rise of deep learning, including
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logistic regression, support vector machine, and random
forest [33, 34]. These algorithms make decisions using spe-
cific functions based on manually selected and engineered
features. Deep learning, a subset of machine learning, is
based on neural networks, particularly those with multiple
layers (33). Deep learning models automatically extract and
learn features from data to make decisions with minimal
human intervention. In addition, investigators often incor-
porate machine learning techniques into the radiomics pro-
cess. Radiomics involves extracting numerous quantitative
features that are invisible to the human eye from medical
images, which are then analyzed and used to construct mod-
els for disease diagnosis, treatment evaluation, and prog-
nostication [35]. In the following sections, we describe how
these Al technologies can be applied to interventional oncol-
ogy based on the literature.

Automatic segmentation of organs, tumors,
and treatment areas

Al can potentially enable automatic segmentation of organs,
tumors, and treatment areas in interventional procedures,
which may contribute to precise tumor targeting, objec-
tive evaluation of treatment areas, and potentially lead to a
streamlined procedural workflow. Accordingly, some inves-
tigators developed Al-based automatic segmentation algo-
rithms using data from patients undergoing image-guided
tumor ablation. He et al. investigated a deep learning-based
method for segmenting the liver, tumor, and ablation zone
using computed tomography (CT) before and after abla-
tion therapy [36]. They trained a residual attention U-net (a
U-shaped fully convolutional neural network [CNN]) model
using the public dataset of the Liver Tumor Segmentation
Challenge (LiTS) [37] and their local dataset of 48 patients
who underwent radiofrequency ablation (RFA) or micro-
wave ablation (MWA) for liver tumors. In the test set, their
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model achieved dice similarity coefficients (DSC) of 0.96,
0.64, and 0.83 for liver, tumor, and ablation zone segmenta-
tion in the arterial phase images, where a DSC score closer
to 1 indicates a higher overlap between the predicted and
true segments. Fang et al. also developed a deep learning-
based liver segmentation algorithm using the LiTS dataset
and demonstrated that the segmentation method was useful
for surface-based image fusion of intraprocedural CT and
preprocedural magnetic resonance imaging (MRI), contrast-
enhanced CT, or positron emission tomography (PET)/CT
images to facilitate tumor targeting [38]. Similar automatic
segmentation methods for lung-tumor ablation have been
investigated. Mahmoodian et al. developed U-Net-based seg-
mentation models using CT data obtained during CT-guided
lung MWA in 50 patients [39]. In their best model, the inter-
section over union (IoU) values for lung, ablated tissue, and
tumor segmentation were 0.98, 0.77, and 0.54, respectively.
Here, the IoU was calculated as the area of overlap between
the predicted and true segmentations divided by the area of
their union, and an IoU value closer to 1 indicates a higher
degree of overlap between the segments [40, 41]. Zhou et al.
evaluated a U-net algorithm for lung nodule segmentation
on preprocedural CT in 55 patients who underwent RFA and
obtained DSC and IoU values of 0.88 and 0.88, respectively
[42].

Deep learning-based segmentation methods may also be
useful for transarterial treatments. Malpani et al. developed
a U-net model for the segmentation of lipiodol deposition
on cone-beam CT after transarterial chemoembolization
(TACE) of liver tumors and compared it to a thresholding
method (a method that delineates the lipiodol deposition
area based on CT value thresholds) [43]. The U-net model
performed better than the thresholding method (DSC; 0.65
vs. 0.45, p<0.001) when segmentation by an experienced
radiologist was used as the ground truth. The difference
between the predicted and actual center of mass was smaller
with the U-net model than with the thresholding method
(15.31 mm vs. 31.34 mm, p <0.001), indicating the higher
accuracy of the U-net model. Chaichana et al. developed a
CNN-based model for the automated segmentation of the
lung, liver, and tumors on technetium-99 macroaggregated
albumin (*™Tc-MAA) single-photon emission CT (SPECT)/
CT images for planning yttrium-90 (*°Y) radioembolization
of liver tumors [44]. The authors trained the model using
images from 56 patients with hepatocellular carcinoma
(HCC), which showed DSC of 0.98, 0.91, and 0.85 in the
segmentation of lungs, liver, and tumors, respectively, in the
test sets. In °Y radioembolization, accurate segmentation
of targets and organs at risk on pretreatment *™Tc-MAA
SPECT/CT is pivotal for precisely predicting microsphere
distribution and dose estimation. As segmentation is usu-
ally performed manually and is time-consuming, Al-based
methods could be of great help in this task.
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Treatment simulation

A robust simulation of technical results is crucial for opti-
mizing treatment methods when planning interventional
oncology procedures. Some investigators are exploring
deep learning-based simulation for image-guided tumor
ablation and transarterial radioembolization.

Simulation of ablation zone in ablative therapies

Covering the target tumor with an adequate margin in the
ablation zone is necessary to ensure local control during
image-guided tumor ablation. The position of the ablation
probe is carefully planned before the procedure to achieve
an appropriate ablation zone, usually using the vendor’s
chart for the expected ablation-zone dimensions. How-
ever, these vendor data, based on ex vivo animal experi-
ments, often differ significantly from actual patient results
because of various factors, such as the local anatomy of
each case. For instance, nearby blood vessels can affect
heat-based ablation by causing a heat-sink effect [45] or
cryoablation by causing a cold-sink effect [46], resulting in
narrower ablation zones. Therefore, to accurately predict
the ablation zone before the procedure, some investiga-
tors have turned to deep learning methods. Keshavamur-
thy et al. introduced a deep learning model that predicts
the ablation zones of lung MWA based on preprocedural
CT images, ablation power and time, and applicator posi-
tion [47]. Data from 52 ablation procedures performed
on 40 patients were used and the ablation zones manu-
ally segmented on post-treatment images by an experi-
enced radiologist served as the ground truth. Their model
outperformed the vendor model (expected ablation zones
based on the vendor data) in predicting the ablation zone
in the test set (DSC: 0.62 vs. 0.56). Notably, their model
could simulate the deformation of the ablation zone caused
by the heat-sink effect of blood vessels and the marginal
shape along organ boundaries. Moreira et al. reported a
deep learning model based on a 3D U-net to predict the
ablation zone in cryoablation (iceball) from the position of
cryoprobes [48]. The model was trained using the intrap-
rocedural MRI of 38 patients undergoing cryoablation
for prostate cancer and predicted the extent of the iceball
more accurately than that by the vendor model (DSC: 0.79
vs. 0.72, p<0.001). There was no significant difference
between the iceball volume predicted by the model and
the ground truth, whereas the volume predicted by the
vendor model was significantly smaller than that of the
ground truth.
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Simulation of absorbed dose in radioembolization

When calculating the expected absorbed doses in *°Y
radioembolization therapy, the dose estimation model
assumes that the biodistribution of *°Y microspheres in
the areas of interest is uniform. However, the estimated
absorbed dose based on pretreatment **™Tc-MAA SPECT/
CT often differs significantly from that calculated based
on the actual biodistribution of *°Y microspheres con-
firmed by post-treatment PET/CT or SPECT/CT [49].
Inaccurate absorbed-dose estimation may cause erroneous
predictions of treatment response, highlighting the need
for more accurate pretreatment dose estimation methods.
To address this, Plachouris et al. developed a deep learn-
ing model that could generate predicted post-treatment
0y PET/CT images based on pretreatment °™Tc-MAA
SPECT/CT data to simulate °°Y microspheres biodistribu-
tion [50]. Their model, a conditional generative adversarial
network (GAN) designed for image-to-image translation,
was trained using data from 19 patients undergoing radi-
oembolization for primary or metastatic liver tumors,
and its performance was evaluated by comparing image-
based dosimetry between the predicted and actual PET-CT
images. The difference between the mean absorbed dose
calculated on the predicted PET-CT and that on the actual
PET-CT was 7.98 +31.39 Gy and 0.03 +0.25 Gy for the
tumor and non-tumoral liver, respectively, suggesting that
their deep learning method provided more accurate dose
prediction than that by existing methods.

Improvement of intraprocedural image
quality

The application of Al to improve medical image quality
has been extensively investigated and is being increasingly
implemented in clinical practice. Deep learning reconstruc-
tion (DLR) of CT and MRI images is representative and
can reduce image noise more effectively than traditional
reconstruction methods [16-20]. Tanahashi et al. recently
explored the use of DLR in interventional imaging, specifi-
cally in CT hepatic arteriography images acquired during
TACE for HCC [51]. They quantitatively and qualitatively
assessed CT hepatic arteriography images of 27 patients
using hybrid-iterative reconstruction and DLR techniques
and found that DLR improved the signal-to-noise ratio of
small hepatic arteries, contrast-to-noise ratio of tumors,
and visualization of tumor-feeding arteries. DLR may also
reduce radiation exposure in CT-guided procedures, as it
can ensure adequate image quality even with lower radiation
doses than those in conventional reconstruction techniques.
Matsumoto et al. investigated the radiation dose during CT-
guided biopsies and drainage using a 320-detector row CT

with DLR and reported that using this system significantly
lowered radiation doses compared to conventional CT sys-
tems (dose length product: 278 vs. 548 mGy*cm in biop-
sies and 246 vs. 667 mGy*cm in drainage, both p <0.001)
[52]. Although reports on the efficacy of DLR in CT-guided
tumor ablation are scarce, dose reduction by DLR may be
particularly beneficial in ablation therapies as they gener-
ally require higher radiation doses than those in biopsy or
drainage [53]. For instance, DLR might be advantageous in
CT-guided renal cryoablation, where the radiation dose can
be high because of multiple needle insertions and repeated
CT scans for iceball monitoring [54-56]. The doses may
be reduced with DLR while maintaining the image quality
required for implementing the procedure (Fig. 2).

Other deep learning applications for image quality
improvement in CT-guided procedures include reduced nee-
dle artifacts and the generation of virtual contrast-enhanced
images. Cao et al. reported a deep learning model for metal
artifact reduction in CT-guided interventional oncology
procedures [57]. They scanned CT images with various
cryoprobe configurations in a phantom and created images
with and without probe artifacts using intensity threshold-
ing. Probes with and without artifacts were segmented and
inserted into patient images to simulate procedural images,
and a U-net-type model was then trained for metal artifact
reduction using these simulated images. When applied to
CT images obtained during actual renal cryoablation, this
model significantly improved the visual assessment scores
by 34-46% for overall image quality, iceball conspicuity,
needle tip visualization, target region confidence, and metal
artifacts. Pinnock et al. reported a deep learning method
using a conditional GAN to generate multi-phase synthetic
contrast-enhanced CT images for interventional procedures
[58]. They trained the models using pre-procedural CT data
from 34 patients undergoing renal cryoablation and demon-
strated the feasibility of generating virtual contrast-enhanced
CT images of various phases from non-contrast CT. Nota-
bly, their model could perform virtual contrast enhance-
ment even on images containing cryoprobes and an iceball
that were not present in the training data. Although such a
method may have the potential to enable better visualization
of target lesions, as in contrast-enhanced CT, without actu-
ally administering contrast media during ablation therapies,
whether the quality of the synthetic images is sufficiently
high and reliable for clinical use remains to be validated.

Additionally, deep learning has the potential to improve
the image quality of distal subtraction angiography (DSA)
during transcatheter procedures. An inherent limitation of
DSA is the presence of misregistration artifacts caused by
misalignment between the mask and contrast-enhanced
images. To overcome this limitation, some investigators
explored the use of deep learning to generate synthetic
DSA images without masks, initially focusing on cerebral
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Fig.2 CT images immediately after freezing in a cryoablation pro-
cedure for a left renal cell carcinoma, with the patient in the prone
position (a, c: axial section; b, d: coronal section). (a, b) Images
reconstructed from low-dose raw data using a hybrid iterative recon-
struction algorithm (AIDR 3D; Canon Medical Systems, Otawara,
Japan). (¢, d) Images reconstructed from the same raw data using a

angiography [59, 60]. Ueda et al. developed a deep learning-
based model to generate cerebral DSA-like images using a
conditional GAN trained with pairs of dynamic angiograms
and DSA without misregistration [59]. The quantitative
evaluation showed a sufficiently high coincidence between
the DSA-like images generated by the model and the original
DSA. Furthermore, a visual evaluation conducted using a
test dataset comprising misregistered images demonstrated
that the DSA-like images achieved similar or better scores
than those by the original DSA. More recently, Crabb et al.
reported a similar approach to generate deep learning-based
DSA-like images of the hepatic and splenic arteries [61].
This method can potentially address the issue of misregis-
tration artifacts caused by patient motion, respiratory move-
ment of organs, and intestinal peristalsis, which obscure
the visualization of target tumors and feeding vessels in

@ Springer

deep learning reconstruction algorithm (AiCE; Canon Medical Sys-
tems). The tumor (asterisks), which appears to have a high density
owing to prior transarterial lipiodol marking, is encompassed within
the low-density iceball (arrowheads). The images reconstructed using
the deep learning reconstruction algorithm provide less image noise
and a more conspicuous iceball contour

transcatheter cancer treatments, such as TACE for HCC.
However, further investigations are necessary before its use
in clinical practice, including whether deep learning-based
DSA ensures sufficient visualization of tumor staining.

Prediction of treatment outcomes

Predicting treatment outcomes is crucial for selecting appro-
priate strategies for each patient. Therefore, investigators
have pursued Al-based models that provide accurate prog-
nostic predictions after intervention. The development of Al-
based predictive models includes multiple steps, such as data
extraction, key feature selection, and model construction.
The data entered into the model can be clinical, radiologi-
cal, or both. Clinical data can include patient demographics,
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laboratory findings, tumor characteristics, and procedure-
related data such as ablation parameters. Radiological data
can be obtained from radiomics analysis or manual image
evaluation. The outcomes predicted from these data include
treatment response, survival, or complications. Machine
learning can be partially or comprehensively used to con-
struct predictive models [62]. When using clinical or hand-
crafted radiological features as inputs, machine learning can
be employed for feature selection, model building, or both;
however, standard statistical methods may also be used for
these purposes. In radiomics, machine learning contributes
to image processing, feature selection, and final model build-
ing. Furthermore, deep learning allows the skipping of mul-
tiple steps and direct processing of image inputs to predict
outputs [62]. When incorporating clinical and radiomics
features into a model, they can be entered simultaneously
into models using machine learning. Alternatively, the clini-
cal and radiomics models can be built separately and later
combined using methods, such as nomograms, to develop
an integrated model.

Al-based predictive models have been frequently reported
for the treatment of liver tumors, particularly HCC. Hsieh
et al. previously reviewed studies published until 2022 on
machine learning and radiomics for the prognosis prediction
of TACE and ablation for HCC [62]. In their review, the
models for TACE showed an area under the curve (AUC)
of 0.81-0.99 in predicting tumor response (responders
[complete or partial response] vs. non-responders [stable or
progressive disease], mainly based on modified Response
Evaluation Criteria in Solid Tumors). The models for abla-
tive therapies showed C-indexes of 0.72—0.73 in predicting
progression-free or recurrence-free survivals. In addition,
two meta-analyses on the radiomics-based prediction of
outcomes after TACE for HCC have been published. The
earlier one by Feng et al. included six studies published until
October 2022, and showed a pooled sensitivity and speci-
ficity of 0.90 and 0.81, respectively, for predicting tumor
response [63]. The latter study by Wang et al. included
24 studies published until July 2023 and showed that the
radiomics-clinical model achieved C-indexes of 0.88 and
0.80 for predicting treatment response and survival status,
respectively [64]. Moreover, Mirza-Aghazadeh-Attari et al.
conducted a meta-analysis of studies published until May
2023 to evaluate the radiomics-based prediction of tumor
response after radioembolization for liver tumor, show-
ing a pooled sensitivity and specificity of 0.84 and 0.87,
respectively [65]. Notably, studies using machine learning
techniques to predict the outcomes of liver tumor treatments
have been successively published, even after these meta-
analyses. The most recent studies published in 2023 or later
are summarized in Tables 1 and 2, excluding those included
in the aforementioned meta-analyses. In these studies, the
models for TACE provided AUC of 0.70-0.96 and 0.80-0.93

for predicting overall survival and tumor response, respec-
tively (Table 1) [66—78]. The models for ablative therapies
provided an AUC of 0.83-0.98 for the prediction of local
tumor control (Table 2) [79-83].

While most studies on Al-based outcome prediction
thus far have been conducted on liver tumors, a few reports
have shown similar results for lung tumor ablation [85-87].
Crombé et al. investigated a radiomics model to predict local
tumor progression (LTP) following RFA of colorectal cancer
lung metastases [85]. Conventional machine learning algo-
rithms were trained using radiomic features extracted from
the ablation zone segmented on early follow-up CT, and the
best model showed a moderate AUC of 0.72. They suggested
that the performance of their radiomics model might have
been limited by the capture of inflammation, intra-alveolar
hemorrhage, cavitation, and fistulization during complicated
procedures.

As described above, Al-based predictive models have
demonstrated moderate-to-high predictive performance.
Such Al-based prognostication may be useful for support-
ing treatment decision-making [88—90]. However, the study
results should be interpreted with caution in terms of repro-
ducibility, given the diversity of the proposed models. The
details of the method vary widely among studies regard-
ing input features (clinical, radiomics, or both), imaging
modality, image processing method, and machine learning
algorithms [62—-65]. Furthermore, the performance of these
models has not always been evaluated using external test
cohorts. Hence, the superiority of any particular algorithm
is not evident and requires further investigation.

Detection of post-treatment recurrence

Al-based techniques for lesion detection in radiologi-
cal images have been studied extensively. For example,
there are a number of reports on the Al-based detection
of pulmonsary nodules on CT [91], and such Al models
have been clinically implemented. Consequently, Al is
expected to be useful in detecting recurrent lesions after
image-guided therapies. Early detection of local recur-
rences on follow-up images is important to promptly
consider a secondary strategy, including reintervention.
However, detecting local recurrence on follow-up images
can be more complicated than detecting de novo lesions
because of post-treatment changes in the region of inter-
est. In image-guided tumor ablation, LTP is identified as a
nodular enhanced focus within or adjacent to the ablation
zone [92, 93]. To detect early LTP, a small focus needs
to be extracted from the treatment area, where radiologi-
cal changes due to reactive inflammation and scarring are
usually observed. Despite this difficulty, some investiga-
tors have used Al to facilitate LTP detection on follow-up
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Table 1 Most recent studies using machine learning to predict outcomes of transarterial treatments for hepatocellular carcinoma

Author, Treatment No. of Outcomes Input Methods Best model performance
Year participants®  predicted
Feature selec- Model con-
tion struction
Liu'Y 2024 cTACE 110 TR® Clinical data ~ c¢cML DL AUC: 0.87
[66] (Internal (mRECIST) MRI (radiom- cML

testing by ics) Nomogram®

five-fold

cross-valida-

tion)

Peng G2024 cTACE Training: 248 EHM Clinical data ~ c¢cML cML C-index: 0.83
[67] Test (internal): MRI (radiom- Nomogram® AUC:

107 ics) 0.83/0.82/0.89/0.95/0.93
for 1/2/3/4/5 yr EHM
probability

Wang Q 2024 TACE with Training: 172 RFS Clinical data ~ ¢cML Nomogram C-index: 0.64
[68] ablation Test (internal): AUC: 0.69/0.72/0.75 for
75 1/3/5 yr RES
Yang C 2024 c¢TACE Training: 77 (O Clinical data ~ c¢cML cML C-index: 0.80
[69] Test (internal): MRI (radiom- AUC: 0.83¢
34 ics)
Zhang L 2024 cTACE Training: 181  TR® Clinical data  Standard cML AUC: 0.80
[70] Test (exter- (mRECIST) CT (hand- statistical
nal): 186 crafted method
features)
Sun Z 2024 TACE Training: 241  OS Clinical data DL DL C-index: 0.88
[71] Test (internal): CT (radiom-  cML cML AUC 0.96 for 3 yr OS
60 ics)
ChenY 2024 TACE Training: oS Clinical data  Standard DL C-index: 0.70
[72] 1,075 statistical AUC: 0.77/0.73/0.70 for
Test (internal): method 1/3/5 yr OS
269
Test (exter-
nal): 414
Zhang X 2024 DEB-TACE Training: 86 TR® Clinical data ~ c¢cML cML AUC: 0.93
[73] Test (internal): (mRECIST) CT (Radiom- Nomogram®
22 ics)
Liu W 2024 TACE Training: oS Clinical data ~ cML cML AUC:
[74)] HAIC 1,700 0.81/0.74/0.70/0.79 for
Test (internal): 1/2/3/5 yr OS
428
Test (exter-
nal): 200
Ince O 2023 cTACE 188 TR® Clinical data ~ c¢cML cML AUC: 091
[75] DEB-TACE Training/test (EASL) MRI (radiom-
(inter- ics)
nal)=7/3
LiJ 2023 [76] DEB-TACE Training: 201  ALFD Clinical data  cML Nomogram AUC: 0.88
Test (internal):
87
Liang Y 2023  Postoperative 274 (O Clinical data  NA cML AUC: 0.91/0.94/0.95
[77] TACE Training/ test ~ RFS for 1/2/3 yr OS,
(inter- 0.81/0.85/0.83 for
nal)=8/2 1/2/3 yr RFS
Mal 2023 TACE with Training: 88 TR® Clinical data ~ cML cML AUC: 0.91
[78] lenvatinib Test (internal): (mRECIST)

37

*The definitions of data set terms varied across studies. To avoid ambiguity due to inconsistent terminology, the names of data sets in the table
are listed according to the following definitions [84], regardless of the terms used in the original papers: i) Training: a data set used for initial
learning to determine model parameters, ii) Validation: a data set used for parameter tuning and model refinement, iii) Test: a data set used to
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Table 1 (continued)

evaluate the final model performance. A test set can be either internal (split from the same pool as the training set) or external (unrelated to the
training and internal testing sets, differing from these temporally or geographically)

PResponders showed complete or partial response, and non-responders exhibited stable or progressive disease
“Nomogram integrated clinical and radiomics models
4A mean value of multiple time-dependent AUC values across 6—54 months from enrollment

TACE = transarterial chemoembolization, cTACE =conventional TACE, DEB-TACE =drug eluting beads TACE, HAIC =hepatic arterial infusion
chemotherapy, TR =treatment response, mRECIST=modified Response Evaluation Criteria in Solid Tumors, EASL=European Association for
the Study of the Liver criteria, EHM =extrahepatic metastasis, RFS=recurrence free survival, OS=overall survival, ALFD =acute liver func-
tion deterioration, MRI/=magnetic resonance imaging, CT=computed tomography, cML=conventional machine learning, DL=deep learning,
NA =not applicable, AUC = area under the curve

Table 2 Most recent studies using machine learning to predict outcomes of ablation therapies for liver tumors

Author, Treatment No. of Outcomes pre-  Input Methods Best model perfor-
Year participants® dicted - mance
Feature selection Model
construc-
tion
Hamed AA 2024 RFA for HCC 111 RFS Clinical data NA cML AUC: 0.80 for 1 yr
[79] Training/Test RFS
(internal) =7/3
Sato M 2023 RFA for HCC Training: 1,422 OS Clinical data NA DL C-index: 0.69
[80] Validation: 178
Test (internal):
178
Ren H 2023 [81] MWA for HCC  Training: 607 LTP Clinical data cML cML AUC: 0.90 for
Test (external): LTP within 2 yrs
299
Shahveranova A MWA for CRLM 42° LTP Clinical data cML cML AUC: 0.98 for
2023 [82] MRI (radiomics) LTP within
6 months
Tabari A 2023 RFA or MWA 97 Pathological Clinical data cML cML AUC: 0.83
[83] for HCC® Training/valida- response? MRI (radiomics)
tion/ test (inter-
nal)=6/2/2

#The definitions of data set terms varied across studies. To avoid ambiguity due to inconsistent terminology, the names of data sets in the table
are listed according to the following definitions [84], regardless of the terms used in the original papers: i) Training: a data set used for initial
learning to determine model parameters, ii) Validation: a data set used for parameter tuning and model refinement, iii) Test: a data set used to
evaluate the final model performance. A test set can be either internal (split from the same pool as the training set) or external (unrelated to the
training and internal testing sets, differing from these temporally or geographically)

®No internal or external testing was performed
‘RFA or MWA were performed as bridge to liver transplant
dHistopathology was assessed at the time of liver transplant

RFA =radiofrequency ablation, MWA =microwave ablation, HCC =hepatocellular carcinoma, CRLM =colorectal carcinoma liver metastases,
RFS=recurrence free survival, OS =overall survival, LTP=1local tumor progression, MRI=magnetic resonance imaging, NA=not applicable,
cML=conventional machine learning, DL =deep learning, AUC = area under the curve

imaging. Yin et al. investigated the efficacy of machine
learning-based radiomics analysis for detecting LTP on
follow-up contrast-enhanced CT after thermal ablation
of HCC and metastatic liver tumors [94]. Radiomics fea-
tures were extracted from the region of interest, including
the ablation zone and surrounding liver parenchyma on
follow-up CT images, and models were trained using the
selected features. The best-performing model achieved an

accuracy of 92.7% and an AUC of 0.97 for detecting LTP.
Lim et al. developed a deep learning method to detect LTP
after RFA or MWA for HCC using follow-up CT images
[95]. Their deep CNN model used 3D patches extracted
from arterial-phase CT images to detect LTP. The model
performance on test datasets demonstrated an accuracy of
97.6% and an AUC of 0.99 in detecting LTP.
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Current issues and future directions

Research has explored a wide variety of AI models for
various tasks in interventional oncology procedures. As
Al technology advances, more Al-based methods will
be developed. Similar to Al, extended reality (virtual,
augmented, and mixed reality) and robotics have gained
attention as cutting-edge technologies that can be useful
in interventional oncology [26, 96]. The integration of Al
with these technologies may further enhance advanced
image-guided cancer treatment [97]. The potential ben-
efits of introducing Al include not only improved workflow
and treatment outcomes, but also a reduction in radiation
exposure to patients and physicians—an inherent issue in
image-guided interventions. Although its significance in
interventional oncology procedures remains to be vali-
dated, the evolution of X-ray fluoroscopy and DSA tech-
nologies by Al-based image processing may contribute to
greatly reduced intraoperative radiation doses [98, 99].

However, most Al-based methods discussed in this
review are still in the research phase, and few have been
implemented in clinical practice. Investigators have uti-
lized various algorithms to develop and test Al models,
making objective evaluation and impartial comparison of
model performance across studies difficult, even among
those aiming for similar tasks. Therefore, the real-world
performance and clinical reliability of Al-based methods
must be interpreted carefully. Additionally, the relatively
small datasets available in the field of interventional radi-
ology compared with those in diagnostic radiology could
be a limitation in the development of Al models [24]. The
establishment and widespread clinical use of highly reli-
able Al models across various areas and institutions are
still uncertain. The Cardiovascular and Interventional
Radiological Society of Europe outlines several condi-
tions for the widespread use of Al in daily clinical prac-
tice, including ensuring sufficient accuracy and reliability,
seamless integration with procedural workflows, and meet-
ing regulatory requirements [100]. They also highlighted
the need to integrate computer science and Al knowledge
into education and training because it might become as
important for interventional radiologists as knowledge in
biostatistics. Moreover, when employing Al-based tech-
nologies, we need to recognize fairness issues in Al, which
are caused by potential biases from data, algorithms, and
Al clinician/patient interactions [101].

In conclusion, AI has the potential to enhance various
aspects of interventional oncology practice, from treat-
ment planning to post-treatment follow-up. For Al tech-
nologies to be widely adopted in interventional oncol-
ogy procedures, further investigations of their reliability
and clinical utility are necessary. Despite this challenge,
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various Al technologies will be incorporated into inter-
ventional oncology in the near future, because of the rapid
research progress in this field.
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