
Vol:.(1234567890)

Japanese Journal of Radiology (2025) 43:164–176
https://doi.org/10.1007/s11604-024-01668-3

INVITED REVIEW

Applications of artificial intelligence in interventional oncology: 
An up-to-date review of the literature

Yusuke Matsui1  · Daiju Ueda2 · Shohei Fujita3 · Yasutaka Fushimi4 · Takahiro Tsuboyama5 · Koji Kamagata6 · 
Rintaro Ito7 · Masahiro Yanagawa8 · Akira Yamada9 · Mariko Kawamura7 · Takeshi Nakaura10 · Noriyuki Fujima11 · 
Taiki Nozaki12 · Fuminari Tatsugami13 · Tomoyuki Fujioka14 · Kenji Hirata15 · Shinji Naganawa7

Received: 20 August 2024 / Accepted: 23 September 2024 / Published online: 2 October 2024 
© The Author(s) 2024

Abstract
Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor 
ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intel-
ligence (AI) in interventional oncology has garnered significant attention. This narrative review describes the current state 
of AI applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the 
number of studies relevant to this topic recently. Investigators have attempted to use AI for various tasks, including automatic 
segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality; 
prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the AI-based prediction of treat-
ment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed 
for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that 
AI is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up. 
However, most AI-based methods discussed in this review are still at the research stage, and few have been implemented in 
clinical practice. To achieve widespread adoption of AI technologies in interventional oncology procedures, further research 
on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various 
AI technologies will be integrated into interventional oncology practices in the near future.
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Introduction

The applications of artificial intelligence (AI) in medicine 
are rapidly advancing and becoming widespread. The field 
of radiology is considered particularly well suited for incor-
porating AI technologies because of the high image-process-
ing capabilities of current AI models. AI has been applied to 
various aspects of diagnostic radiology and nuclear medicine 
across various imaging modalities and target organs [1–6]. 
Studies have shown that AI can be useful for lesion detec-
tion [7–10], differential diagnosis [11–15], and image qual-
ity improvement [16–21]. Furthermore, the application of 
AI has been increasingly reported in the field of radiation 
therapy, where it is used to support various tasks during 
treatment, including preparation, delivery, and evaluation 
[22].

The application of AI is being explored also in interven-
tional radiology, a specialty that offers image-guided, mini-
mally invasive therapies [23, 24]. The literature has shown 
the potential of AI-based tools for intraprocedural support 
and pre/post-procedural assessment in various interventional 
radiology fields, including neurointervention, aortic and 
peripheral vascular intervention, and coronary intervention 
[25, 26]. Interventional oncology, a subspecialty of inter-
ventional radiology, offers image-guided interventions for 
malignant tumors, with AI-based technologies expected to 
play a significant role. The key treatments in interventional 
oncology include transarterial tumor embolization and 
percutaneous tumor ablation for lesions in various organs 
[27–32]. In these treatments, imaging is crucial at every 
stage, from deciding on treatment indications to planning, 
performing procedures, and post-treatment follow-up. Con-
sequently, interventional oncology may potentially benefit 
from rapid advancements in AI-based image-processing Extended author information available on the last page of the article
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technologies, leading to significant interest and an increase 
in relevant studies. This review outlines the current research 
on AI applications in interventional oncology based on the 
latest literature.

Overview of literature

A literature search was conducted for this narrative review 
in June 2024, using PubMed with the following terms: 
“artificial intelligence,” “machine learning,” “deep learn-
ing,” or “neural network,” and “interventional oncology,” 
“tumor ablation,” “radiofrequency ablation,” “microwave 
ablation,” “cryoablation,” “embolization,” “chemoemboli-
zation,” or “radioembolization.” Notably, 90% (332/371) of 
the articles identified in the search were published in 2020 
or later, indicating a recent rapid increase in research on 
this topic. We screened these articles and extracted relevant 
studies for review, primarily focusing on those associated 
with the clinical application of AI in interventional oncology 
and excluding those that solely employed animal experimen-
tal data or focused on AI methodologies. Additionally, we 
reviewed several relevant articles found through a manual 
search of the citations in the reviewed articles or through 
personal communication.

In the reviewed studies, the application of AI has been 
attempted in various tasks, including automatic segmen-
tation of organs, tumors, and treatment areas; treatment 
simulation; improvement of intraprocedural image quality; 
prediction of treatment outcomes; and detection of post-
treatment recurrence (Fig. 1). Among these, the prediction 
of treatment outcomes has been the most studied. From a 
technical perspective, the investigators have used deep and 
conventional machine learning, sometimes comparing these 
approaches. Here, “conventional machine learning” refers to 
the machine learning algorithms that have been widely used 
since the time before the rise of deep learning, including 

logistic regression, support vector machine, and random 
forest [33, 34]. These algorithms make decisions using spe-
cific functions based on manually selected and engineered 
features. Deep learning, a subset of machine learning, is 
based on neural networks, particularly those with multiple 
layers (33). Deep learning models automatically extract and 
learn features from data to make decisions with minimal 
human intervention. In addition, investigators often incor-
porate machine learning techniques into the radiomics pro-
cess. Radiomics involves extracting numerous quantitative 
features that are invisible to the human eye from medical 
images, which are then analyzed and used to construct mod-
els for disease diagnosis, treatment evaluation, and prog-
nostication [35]. In the following sections, we describe how 
these AI technologies can be applied to interventional oncol-
ogy based on the literature.

Automatic segmentation of organs, tumors, 
and treatment areas

AI can potentially enable automatic segmentation of organs, 
tumors, and treatment areas in interventional procedures, 
which may contribute to precise tumor targeting, objec-
tive evaluation of treatment areas, and potentially lead to a 
streamlined procedural workflow. Accordingly, some inves-
tigators developed AI-based automatic segmentation algo-
rithms using data from patients undergoing image-guided 
tumor ablation. He et al. investigated a deep learning-based 
method for segmenting the liver, tumor, and ablation zone 
using computed tomography (CT) before and after abla-
tion therapy [36]. They trained a residual attention U-net (a 
U-shaped fully convolutional neural network [CNN]) model 
using the public dataset of the Liver Tumor Segmentation 
Challenge (LiTS) [37] and their local dataset of 48 patients 
who underwent radiofrequency ablation (RFA) or micro-
wave ablation (MWA) for liver tumors. In the test set, their 

Fig. 1  Application of artificial 
intelligence in interventional 
oncology. Deep learning could 
be utilized for the various tasks 
mentioned in this review. For 
outcome prediction and recur-
rence detection, deep learning 
or conventional machine learn-
ing, with or without radiomics, 
could be employed
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model achieved dice similarity coefficients (DSC) of 0.96, 
0.64, and 0.83 for liver, tumor, and ablation zone segmenta-
tion in the arterial phase images, where a DSC score closer 
to 1 indicates a higher overlap between the predicted and 
true segments. Fang et al. also developed a deep learning-
based liver segmentation algorithm using the LiTS dataset 
and demonstrated that the segmentation method was useful 
for surface-based image fusion of intraprocedural CT and 
preprocedural magnetic resonance imaging (MRI), contrast-
enhanced CT, or positron emission tomography (PET)/CT 
images to facilitate tumor targeting [38]. Similar automatic 
segmentation methods for lung-tumor ablation have been 
investigated. Mahmoodian et al. developed U-Net-based seg-
mentation models using CT data obtained during CT-guided 
lung MWA in 50 patients [39]. In their best model, the inter-
section over union (IoU) values for lung, ablated tissue, and 
tumor segmentation were 0.98, 0.77, and 0.54, respectively. 
Here, the IoU was calculated as the area of overlap between 
the predicted and true segmentations divided by the area of 
their union, and an IoU value closer to 1 indicates a higher 
degree of overlap between the segments [40, 41]. Zhou et al. 
evaluated a U-net algorithm for lung nodule segmentation 
on preprocedural CT in 55 patients who underwent RFA and 
obtained DSC and IoU values of 0.88 and 0.88, respectively 
[42].

Deep learning-based segmentation methods may also be 
useful for transarterial treatments. Malpani et al. developed 
a U-net model for the segmentation of lipiodol deposition 
on cone-beam CT after transarterial chemoembolization 
(TACE) of liver tumors and compared it to a thresholding 
method (a method that delineates the lipiodol deposition 
area based on CT value thresholds) [43]. The U-net model 
performed better than the thresholding method (DSC; 0.65 
vs. 0.45, p < 0.001) when segmentation by an experienced 
radiologist was used as the ground truth. The difference 
between the predicted and actual center of mass was smaller 
with the U-net model than with the thresholding method 
(15.31 mm vs. 31.34 mm, p < 0.001), indicating the higher 
accuracy of the U-net model. Chaichana et al. developed a 
CNN-based model for the automated segmentation of the 
lung, liver, and tumors on technetium-99 macroaggregated 
albumin (99mTc-MAA) single-photon emission CT (SPECT)/
CT images for planning yttrium-90 (90Y) radioembolization 
of liver tumors [44]. The authors trained the model using 
images from 56 patients with hepatocellular carcinoma 
(HCC), which showed DSC of 0.98, 0.91, and 0.85 in the 
segmentation of lungs, liver, and tumors, respectively, in the 
test sets. In 90Y radioembolization, accurate segmentation 
of targets and organs at risk on pretreatment 99mTc-MAA 
SPECT/CT is pivotal for precisely predicting microsphere 
distribution and dose estimation. As segmentation is usu-
ally performed manually and is time-consuming, AI-based 
methods could be of great help in this task.

Treatment simulation

A robust simulation of technical results is crucial for opti-
mizing treatment methods when planning interventional 
oncology procedures. Some investigators are exploring 
deep learning-based simulation for image-guided tumor 
ablation and transarterial radioembolization.

Simulation of ablation zone in ablative therapies

Covering the target tumor with an adequate margin in the 
ablation zone is necessary to ensure local control during 
image-guided tumor ablation. The position of the ablation 
probe is carefully planned before the procedure to achieve 
an appropriate ablation zone, usually using the vendor’s 
chart for the expected ablation-zone dimensions. How-
ever, these vendor data, based on ex vivo animal experi-
ments, often differ significantly from actual patient results 
because of various factors, such as the local anatomy of 
each case. For instance, nearby blood vessels can affect 
heat-based ablation by causing a heat-sink effect [45] or 
cryoablation by causing a cold-sink effect [46], resulting in 
narrower ablation zones. Therefore, to accurately predict 
the ablation zone before the procedure, some investiga-
tors have turned to deep learning methods. Keshavamur-
thy et al. introduced a deep learning model that predicts 
the ablation zones of lung MWA based on preprocedural 
CT images, ablation power and time, and applicator posi-
tion [47]. Data from 52 ablation procedures performed 
on 40 patients were used and the ablation zones manu-
ally segmented on post-treatment images by an experi-
enced radiologist served as the ground truth. Their model 
outperformed the vendor model (expected ablation zones 
based on the vendor data) in predicting the ablation zone 
in the test set (DSC: 0.62 vs. 0.56). Notably, their model 
could simulate the deformation of the ablation zone caused 
by the heat-sink effect of blood vessels and the marginal 
shape along organ boundaries. Moreira et al. reported a 
deep learning model based on a 3D U-net to predict the 
ablation zone in cryoablation (iceball) from the position of 
cryoprobes [48]. The model was trained using the intrap-
rocedural MRI of 38 patients undergoing cryoablation 
for prostate cancer and predicted the extent of the iceball 
more accurately than that by the vendor model (DSC: 0.79 
vs. 0.72, p < 0.001). There was no significant difference 
between the iceball volume predicted by the model and 
the ground truth, whereas the volume predicted by the 
vendor model was significantly smaller than that of the 
ground truth.
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Simulation of absorbed dose in radioembolization

When calculating the expected absorbed doses in 90Y 
radioembolization therapy, the dose estimation model 
assumes that the biodistribution of 90Y microspheres in 
the areas of interest is uniform. However, the estimated 
absorbed dose based on pretreatment 99mTc-MAA SPECT/
CT often differs significantly from that calculated based 
on the actual biodistribution of 90Y microspheres con-
firmed by post-treatment PET/CT or SPECT/CT [49]. 
Inaccurate absorbed-dose estimation may cause erroneous 
predictions of treatment response, highlighting the need 
for more accurate pretreatment dose estimation methods. 
To address this, Plachouris et al. developed a deep learn-
ing model that could generate predicted post-treatment 
90Y PET/CT images based on pretreatment 99mTc-MAA 
SPECT/CT data to simulate 90Y microspheres biodistribu-
tion [50]. Their model, a conditional generative adversarial 
network (GAN) designed for image-to-image translation, 
was trained using data from 19 patients undergoing radi-
oembolization for primary or metastatic liver tumors, 
and its performance was evaluated by comparing image-
based dosimetry between the predicted and actual PET-CT 
images. The difference between the mean absorbed dose 
calculated on the predicted PET-CT and that on the actual 
PET-CT was 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the 
tumor and non-tumoral liver, respectively, suggesting that 
their deep learning method provided more accurate dose 
prediction than that by existing methods.

Improvement of intraprocedural image 
quality

The application of AI to improve medical image quality 
has been extensively investigated and is being increasingly 
implemented in clinical practice. Deep learning reconstruc-
tion (DLR) of CT and MRI images is representative and 
can reduce image noise more effectively than traditional 
reconstruction methods [16–20]. Tanahashi et al. recently 
explored the use of DLR in interventional imaging, specifi-
cally in CT hepatic arteriography images acquired during 
TACE for HCC [51]. They quantitatively and qualitatively 
assessed CT hepatic arteriography images of 27 patients 
using hybrid-iterative reconstruction and DLR techniques 
and found that DLR improved the signal-to-noise ratio of 
small hepatic arteries, contrast-to-noise ratio of tumors, 
and visualization of tumor-feeding arteries. DLR may also 
reduce radiation exposure in CT-guided procedures, as it 
can ensure adequate image quality even with lower radiation 
doses than those in conventional reconstruction techniques. 
Matsumoto et al. investigated the radiation dose during CT-
guided biopsies and drainage using a 320-detector row CT 

with DLR and reported that using this system significantly 
lowered radiation doses compared to conventional CT sys-
tems (dose length product: 278 vs. 548 mGy*cm in biop-
sies and 246 vs. 667 mGy*cm in drainage, both p < 0.001) 
[52]. Although reports on the efficacy of DLR in CT-guided 
tumor ablation are scarce, dose reduction by DLR may be 
particularly beneficial in ablation therapies as they gener-
ally require higher radiation doses than those in biopsy or 
drainage [53]. For instance, DLR might be advantageous in 
CT-guided renal cryoablation, where the radiation dose can 
be high because of multiple needle insertions and repeated 
CT scans for iceball monitoring [54–56]. The doses may 
be reduced with DLR while maintaining the image quality 
required for implementing the procedure (Fig. 2).

Other deep learning applications for image quality 
improvement in CT-guided procedures include reduced nee-
dle artifacts and the generation of virtual contrast-enhanced 
images. Cao et al. reported a deep learning model for metal 
artifact reduction in CT-guided interventional oncology 
procedures [57]. They scanned CT images with various 
cryoprobe configurations in a phantom and created images 
with and without probe artifacts using intensity threshold-
ing. Probes with and without artifacts were segmented and 
inserted into patient images to simulate procedural images, 
and a U-net-type model was then trained for metal artifact 
reduction using these simulated images. When applied to 
CT images obtained during actual renal cryoablation, this 
model significantly improved the visual assessment scores 
by 34–46% for overall image quality, iceball conspicuity, 
needle tip visualization, target region confidence, and metal 
artifacts. Pinnock et al. reported a deep learning method 
using a conditional GAN to generate multi-phase synthetic 
contrast-enhanced CT images for interventional procedures 
[58]. They trained the models using pre-procedural CT data 
from 34 patients undergoing renal cryoablation and demon-
strated the feasibility of generating virtual contrast-enhanced 
CT images of various phases from non-contrast CT. Nota-
bly, their model could perform virtual contrast enhance-
ment even on images containing cryoprobes and an iceball 
that were not present in the training data. Although such a 
method may have the potential to enable better visualization 
of target lesions, as in contrast-enhanced CT, without actu-
ally administering contrast media during ablation therapies, 
whether the quality of the synthetic images is sufficiently 
high and reliable for clinical use remains to be validated.

Additionally, deep learning has the potential to improve 
the image quality of distal subtraction angiography (DSA) 
during transcatheter procedures. An inherent limitation of 
DSA is the presence of misregistration artifacts caused by 
misalignment between the mask and contrast-enhanced 
images. To overcome this limitation, some investigators 
explored the use of deep learning to generate synthetic 
DSA images without masks, initially focusing on cerebral 



168 Japanese Journal of Radiology (2025) 43:164–176

angiography [59, 60]. Ueda et al. developed a deep learning-
based model to generate cerebral DSA-like images using a 
conditional GAN trained with pairs of dynamic angiograms 
and DSA without misregistration [59]. The quantitative 
evaluation showed a sufficiently high coincidence between 
the DSA-like images generated by the model and the original 
DSA. Furthermore, a visual evaluation conducted using a 
test dataset comprising misregistered images demonstrated 
that the DSA-like images achieved similar or better scores 
than those by the original DSA. More recently, Crabb et al. 
reported a similar approach to generate deep learning-based 
DSA-like images of the hepatic and splenic arteries [61]. 
This method can potentially address the issue of misregis-
tration artifacts caused by patient motion, respiratory move-
ment of organs, and intestinal peristalsis, which obscure 
the visualization of target tumors and feeding vessels in 

transcatheter cancer treatments, such as TACE for HCC. 
However, further investigations are necessary before its use 
in clinical practice, including whether deep learning-based 
DSA ensures sufficient visualization of tumor staining.

Prediction of treatment outcomes

Predicting treatment outcomes is crucial for selecting appro-
priate strategies for each patient. Therefore, investigators 
have pursued AI-based models that provide accurate prog-
nostic predictions after intervention. The development of AI-
based predictive models includes multiple steps, such as data 
extraction, key feature selection, and model construction. 
The data entered into the model can be clinical, radiologi-
cal, or both. Clinical data can include patient demographics, 

ba

dc

Fig. 2  CT images immediately after freezing in a cryoablation pro-
cedure for a left renal cell carcinoma, with the patient in the prone 
position (a, c: axial section; b, d: coronal section). (a, b) Images 
reconstructed from low-dose raw data using a hybrid iterative recon-
struction algorithm (AIDR 3D; Canon Medical Systems, Otawara, 
Japan). (c, d) Images reconstructed from the same raw data using a 

deep learning reconstruction algorithm (AiCE; Canon Medical Sys-
tems). The tumor (asterisks), which appears to have a high density 
owing to prior transarterial lipiodol marking, is encompassed within 
the low-density iceball (arrowheads). The images reconstructed using 
the deep learning reconstruction algorithm provide less image noise 
and a more conspicuous iceball contour
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laboratory findings, tumor characteristics, and procedure-
related data such as ablation parameters. Radiological data 
can be obtained from radiomics analysis or manual image 
evaluation. The outcomes predicted from these data include 
treatment response, survival, or complications. Machine 
learning can be partially or comprehensively used to con-
struct predictive models [62]. When using clinical or hand-
crafted radiological features as inputs, machine learning can 
be employed for feature selection, model building, or both; 
however, standard statistical methods may also be used for 
these purposes. In radiomics, machine learning contributes 
to image processing, feature selection, and final model build-
ing. Furthermore, deep learning allows the skipping of mul-
tiple steps and direct processing of image inputs to predict 
outputs [62]. When incorporating clinical and radiomics 
features into a model, they can be entered simultaneously 
into models using machine learning. Alternatively, the clini-
cal and radiomics models can be built separately and later 
combined using methods, such as nomograms, to develop 
an integrated model.

AI-based predictive models have been frequently reported 
for the treatment of liver tumors, particularly HCC. Hsieh 
et al. previously reviewed studies published until 2022 on 
machine learning and radiomics for the prognosis prediction 
of TACE and ablation for HCC [62]. In their review, the 
models for TACE showed an area under the curve (AUC) 
of 0.81–0.99 in predicting tumor response (responders 
[complete or partial response] vs. non-responders [stable or 
progressive disease], mainly based on modified Response 
Evaluation Criteria in Solid Tumors). The models for abla-
tive therapies showed C-indexes of 0.72–0.73 in predicting 
progression-free or recurrence-free survivals. In addition, 
two meta-analyses on the radiomics-based prediction of 
outcomes after TACE for HCC have been published. The 
earlier one by Feng et al. included six studies published until 
October 2022, and showed a pooled sensitivity and speci-
ficity of 0.90 and 0.81, respectively, for predicting tumor 
response [63]. The latter study by Wang et al. included 
24 studies published until July 2023 and showed that the 
radiomics-clinical model achieved C-indexes of 0.88 and 
0.80 for predicting treatment response and survival status, 
respectively [64]. Moreover, Mirza-Aghazadeh-Attari et al. 
conducted a meta-analysis of studies published until May 
2023 to evaluate the radiomics-based prediction of tumor 
response after radioembolization for liver tumor, show-
ing a pooled sensitivity and specificity of 0.84 and 0.87, 
respectively [65]. Notably, studies using machine learning 
techniques to predict the outcomes of liver tumor treatments 
have been successively published, even after these meta-
analyses. The most recent studies published in 2023 or later 
are summarized in Tables 1 and 2, excluding those included 
in the aforementioned meta-analyses. In these studies, the 
models for TACE provided AUC of 0.70–0.96 and 0.80–0.93 

for predicting overall survival and tumor response, respec-
tively (Table 1) [66–78]. The models for ablative therapies 
provided an AUC of 0.83–0.98 for the prediction of local 
tumor control (Table 2) [79–83].

While most studies on AI-based outcome prediction 
thus far have been conducted on liver tumors, a few reports 
have shown similar results for lung tumor ablation [85–87]. 
Crombé et al. investigated a radiomics model to predict local 
tumor progression (LTP) following RFA of colorectal cancer 
lung metastases [85]. Conventional machine learning algo-
rithms were trained using radiomic features extracted from 
the ablation zone segmented on early follow-up CT, and the 
best model showed a moderate AUC of 0.72. They suggested 
that the performance of their radiomics model might have 
been limited by the capture of inflammation, intra-alveolar 
hemorrhage, cavitation, and fistulization during complicated 
procedures.

As described above, AI-based predictive models have 
demonstrated moderate-to-high predictive performance. 
Such AI-based prognostication may be useful for support-
ing treatment decision-making [88–90]. However, the study 
results should be interpreted with caution in terms of repro-
ducibility, given the diversity of the proposed models. The 
details of the method vary widely among studies regard-
ing input features (clinical, radiomics, or both), imaging 
modality, image processing method, and machine learning 
algorithms [62–65]. Furthermore, the performance of these 
models has not always been evaluated using external test 
cohorts. Hence, the superiority of any particular algorithm 
is not evident and requires further investigation.

Detection of post-treatment recurrence

AI-based techniques for lesion detection in radiologi-
cal images have been studied extensively. For example, 
there are a number of reports on the AI-based detection 
of pulmonsary nodules on CT [91], and such AI models 
have been clinically implemented. Consequently, AI is 
expected to be useful in detecting recurrent lesions after 
image-guided therapies. Early detection of local recur-
rences on follow-up images is important to promptly 
consider a secondary strategy, including reintervention. 
However, detecting local recurrence on follow-up images 
can be more complicated than detecting de novo lesions 
because of post-treatment changes in the region of inter-
est. In image-guided tumor ablation, LTP is identified as a 
nodular enhanced focus within or adjacent to the ablation 
zone [92, 93]. To detect early LTP, a small focus needs 
to be extracted from the treatment area, where radiologi-
cal changes due to reactive inflammation and scarring are 
usually observed. Despite this difficulty, some investiga-
tors have used AI to facilitate LTP detection on follow-up 
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Table 1  Most recent studies using machine learning to predict outcomes of transarterial treatments for hepatocellular carcinoma

a The definitions of data set terms varied across studies. To avoid ambiguity due to inconsistent terminology, the names of data sets in the table 
are listed according to the following definitions [84], regardless of the terms used in the original papers: i) Training: a data set used for initial 
learning to determine model parameters, ii) Validation: a data set used for parameter tuning and model refinement, iii) Test: a data set used to 

Author,
Year

Treatment No. of 
 participantsa

Outcomes 
predicted

Input Methods Best model performance
Feature selec-
tion

Model con-
struction

Liu Y 2024 
[66]

cTACE 110
(Internal 

testing by 
five-fold 
cross-valida-
tion)

TRb

(mRECIST)
Clinical data
MRI (radiom-

ics)

cML DL
cML
Nomogramc

AUC: 0.87

Peng G 2024 
[67]

cTACE Training: 248
Test (internal): 

107

EHM Clinical data
MRI (radiom-

ics)

cML cML
Nomogramc

C-index: 0.83
AUC: 

0.83/0.82/0.89/0.95/0.93 
for 1/2/3/4/5 yr EHM 
probability

Wang Q 2024 
[68]

TACE with 
ablation

Training: 172
Test (internal): 

75

RFS Clinical data cML Nomogram C-index: 0.64
AUC: 0.69/0.72/0.75 for 

1/3/5 yr RFS
Yang C 2024 

[69]
cTACE Training: 77

Test (internal): 
34

OS Clinical data
MRI (radiom-

ics)

cML cML C-index: 0.80
AUC: 0.83d

Zhang L 2024 
[70]

cTACE Training: 181
Test (exter-

nal): 186

TRb

(mRECIST)
Clinical data
CT (hand-

crafted 
features)

Standard 
statistical 
method

cML AUC: 0.80

Sun Z 2024 
[71]

TACE Training: 241
Test (internal): 

60

OS Clinical data
CT (radiom-

ics)

DL
cML

DL
cML

C-index: 0.88
AUC 0.96 for 3 yr OS

Chen Y 2024 
[72]

TACE Training: 
1,075

Test (internal): 
269

Test (exter-
nal): 414

OS Clinical data Standard 
statistical 
method

DL C-index: 0.70
AUC: 0.77/0.73/0.70 for 

1/3/5 yr OS

Zhang X 2024 
[73]

DEB-TACE Training: 86
Test (internal): 

22

TRb

(mRECIST)
Clinical data
CT (Radiom-

ics)

cML cML
Nomogramc

AUC: 0.93

Liu W 2024 
[74)]

TACE
HAIC

Training: 
1,700

Test (internal): 
428

Test (exter-
nal): 200

OS Clinical data cML cML AUC:
0.81/0.74/0.70/0.79 for 

1/2/3/5 yr OS

İnce O 2023 
[75]

cTACE
DEB-TACE

188
Training/test 

(inter-
nal) = 7/3

TRb

(EASL)
Clinical data
MRI (radiom-

ics)

cML cML AUC: 0.91

Li J 2023 [76] DEB-TACE Training: 201
Test (internal): 

87

ALFD Clinical data cML Nomogram AUC: 0.88

Liang Y 2023 
[77]

Postoperative 
TACE

274
Training/ test 

(inter-
nal) = 8/2

OS
RFS

Clinical data NA cML AUC: 0.91/0.94/0.95 
for 1/2/3 yr OS, 
0.81/0.85/0.83 for 
1/2/3 yr RFS

Ma J 2023 
[78]

TACE with 
lenvatinib

Training: 88
Test (internal): 

37

TRb

(mRECIST)
Clinical data cML cML AUC: 0.91
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imaging. Yin et al. investigated the efficacy of machine 
learning-based radiomics analysis for detecting LTP on 
follow-up contrast-enhanced CT after thermal ablation 
of HCC and metastatic liver tumors [94]. Radiomics fea-
tures were extracted from the region of interest, including 
the ablation zone and surrounding liver parenchyma on 
follow-up CT images, and models were trained using the 
selected features. The best-performing model achieved an 

accuracy of 92.7% and an AUC of 0.97 for detecting LTP. 
Lim et al. developed a deep learning method to detect LTP 
after RFA or MWA for HCC using follow-up CT images 
[95]. Their deep CNN model used 3D patches extracted 
from arterial-phase CT images to detect LTP. The model 
performance on test datasets demonstrated an accuracy of 
97.6% and an AUC of 0.99 in detecting LTP.

evaluate the final model performance. A test set can be either internal (split from the same pool as the training set) or external (unrelated to the 
training and internal testing sets, differing from these temporally or geographically)
b Responders showed complete or partial response, and non-responders exhibited stable or progressive disease
c Nomogram integrated clinical and radiomics models
d A mean value of multiple time-dependent AUC values across 6–54 months from enrollment
TACE = transarterial chemoembolization, cTACE = conventional TACE, DEB-TACE = drug eluting beads TACE, HAIC = hepatic arterial infusion 
chemotherapy, TR = treatment response, mRECIST = modified Response Evaluation Criteria in Solid Tumors, EASL = European Association for 
the Study of the Liver criteria, EHM = extrahepatic metastasis, RFS = recurrence free survival, OS = overall survival, ALFD = acute liver func-
tion deterioration, MRI = magnetic resonance imaging, CT = computed tomography, cML = conventional machine learning, DL = deep learning, 
NA = not applicable, AUC  = area under the curve

Table 1  (continued)

Table 2  Most recent studies using machine learning to predict outcomes of ablation therapies for liver tumors

a The definitions of data set terms varied across studies. To avoid ambiguity due to inconsistent terminology, the names of data sets in the table 
are listed according to the following definitions [84], regardless of the terms used in the original papers: i) Training: a data set used for initial 
learning to determine model parameters, ii) Validation: a data set used for parameter tuning and model refinement, iii) Test: a data set used to 
evaluate the final model performance. A test set can be either internal (split from the same pool as the training set) or external (unrelated to the 
training and internal testing sets, differing from these temporally or geographically)
b No internal or external testing was performed
c RFA or MWA were performed as bridge to liver transplant
d Histopathology was assessed at the time of liver transplant
RFA = radiofrequency ablation, MWA = microwave ablation, HCC = hepatocellular carcinoma, CRLM = colorectal carcinoma liver metastases, 
RFS = recurrence free survival, OS = overall survival, LTP = local tumor progression, MRI = magnetic resonance imaging, NA = not applicable, 
cML = conventional machine learning, DL = deep learning, AUC  = area under the curve

Author,
Year

Treatment No. of 
 participantsa

Outcomes pre-
dicted

Input Methods Best model perfor-
manceFeature selection Model 

construc-
tion

Hamed AA 2024 
[79]

RFA for HCC 111
Training/Test 

(internal) = 7/3

RFS Clinical data NA cML AUC: 0.80 for 1 yr 
RFS

Sato M 2023 
[80]

RFA for HCC Training: 1,422
Validation: 178
Test (internal): 

178

OS Clinical data NA DL C-index: 0.69

Ren H 2023 [81] MWA for HCC Training: 607
Test (external): 

299

LTP Clinical data cML cML AUC: 0.90 for 
LTP within 2 yrs

Shahveranova A 
2023 [82]

MWA for CRLM 42b LTP Clinical data
MRI (radiomics)

cML cML AUC: 0.98 for 
LTP within 
6 months

Tabari A 2023 
[83]

RFA or MWA 
for  HCCc

97
Training/valida-

tion/ test (inter-
nal) = 6/2/2

Pathological 
 responsed

Clinical data
MRI (radiomics)

cML cML AUC: 0.83
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Current issues and future directions

Research has explored a wide variety of AI models for 
various tasks in interventional oncology procedures. As 
AI technology advances, more AI-based methods will 
be developed. Similar to AI, extended reality (virtual, 
augmented, and mixed reality) and robotics have gained 
attention as cutting-edge technologies that can be useful 
in interventional oncology [26, 96]. The integration of AI 
with these technologies may further enhance advanced 
image-guided cancer treatment [97]. The potential ben-
efits of introducing AI include not only improved workflow 
and treatment outcomes, but also a reduction in radiation 
exposure to patients and physicians—an inherent issue in 
image-guided interventions. Although its significance in 
interventional oncology procedures remains to be vali-
dated, the evolution of X-ray fluoroscopy and DSA tech-
nologies by AI-based image processing may contribute to 
greatly reduced intraoperative radiation doses [98, 99].

However, most AI-based methods discussed in this 
review are still in the research phase, and few have been 
implemented in clinical practice. Investigators have uti-
lized various algorithms to develop and test AI models, 
making objective evaluation and impartial comparison of 
model performance across studies difficult, even among 
those aiming for similar tasks. Therefore, the real-world 
performance and clinical reliability of AI-based methods 
must be interpreted carefully. Additionally, the relatively 
small datasets available in the field of interventional radi-
ology compared with those in diagnostic radiology could 
be a limitation in the development of AI models [24]. The 
establishment and widespread clinical use of highly reli-
able AI models across various areas and institutions are 
still uncertain. The Cardiovascular and Interventional 
Radiological Society of Europe outlines several condi-
tions for the widespread use of AI in daily clinical prac-
tice, including ensuring sufficient accuracy and reliability, 
seamless integration with procedural workflows, and meet-
ing regulatory requirements [100]. They also highlighted 
the need to integrate computer science and AI knowledge 
into education and training because it might become as 
important for interventional radiologists as knowledge in 
biostatistics. Moreover, when employing AI-based tech-
nologies, we need to recognize fairness issues in AI, which 
are caused by potential biases from data, algorithms, and 
AI clinician/patient interactions [101].

In conclusion, AI has the potential to enhance various 
aspects of interventional oncology practice, from treat-
ment planning to post-treatment follow-up. For AI tech-
nologies to be widely adopted in interventional oncol-
ogy procedures, further investigations of their reliability 
and clinical utility are necessary. Despite this challenge, 

various AI technologies will be incorporated into inter-
ventional oncology in the near future, because of the rapid 
research progress in this field.
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