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Every year, an estimated 1.57 million Americans have at least 
one pulmonary nodule detected either incidentally at rou-

tine chest CT or during lung cancer screening (1). Although 
biopsy of the nodule remains the reference standard diagnostic 
test for malignancy, it involves an invasive procedure associat-
ed with morbidity, mortality, additional health care costs, and 
anxiety for patients (2,3). With 95% of indeterminate pulmo-
nary nodules found to be benign (4), clinical guidelines (1,5–7) 
recommend risk-stratifying nodules before resorting to invasive 
diagnostics and surgical intervention. Statistical models for 
predicting lung cancer have the potential to improve this risk 
stratification, aiding in earlier diagnosis of malignancy as well 
as reducing morbidity, costs, and anxiety associated with the 
workup of benign disease.

Validated predictive models developed to stratify pulmonary 
nodules consist of clinical prediction models, cross-sectional or 
longitudinal artificial intelligence (AI) models, and multimodal 
approaches. We consider a predictive model validated if it has 
demonstrated competitive discriminatory performance (area un-
der the receiver operating characteristic curve [AUC] above 0.75) 
on a separate test cohort. The Brock (8) and Mayo (9) models 
are two of the most used models in clinical practice and recom-
mended by clinical guidelines. They are well validated logistic 
regressions and are based on readily available variables, such as 
demographics (10), smoking history, and radiologist assessment 

of nodule features. However, they require radiologists to first de-
tect and characterize the nodule, a step that can be subject to 
interreader variability (11–13).

Recent research has validated several AI models for cancer pre-
diction. These operate directly on the voxels of the image, negat-
ing the need for radiologists to first describe nodule morphology 
or measure sizes. One of the early AI successes in lung cancer 
prediction was the study by Liao et al (14). Their two-step ap-
proach involved first detecting suspicious lesions in the lung field 
from a single chest CT image and then computing malignancy 
risk from the proposed regions of interest. Recently, Mikhael et 
al (15) publicly released Sybil, a predictive model that extracts 
global chest features along with regional attention features to pre-
dict lung cancer risk up to 6 years.

Previous work has also leveraged AI on longitudinal imag-
ing. Gao et al (16) and Li et al (17) extended the work of Liao 
et al (14) to leverage consecutive chest CT scans and the time 
between scans. In another longitudinal imaging approach, Ar-
dila et al (18) demonstrated impressive AUC performance of a 
model including global chest features outside of local regions 
of interest, but their model was not released publicly. Recently, 
efforts that leveraged data from multiple modalities have shown 
(19,20), with limited validation, that the combination of clin-
ical variables and imaging AI can improve performance over 
single-modality approaches.

Purpose:  To evaluate the performance of eight lung cancer prediction models on patient cohorts with screening-detected, incidentally detected, and bron-
choscopically biopsied pulmonary nodules.

Materials and Methods:  This study retrospectively evaluated promising predictive models for lung cancer prediction in three clinical settings: lung cancer 
screening with low-dose CT, incidentally detected pulmonary nodules, and nodules deemed suspicious enough to warrant a biopsy. The area under the 
receiver operating characteristic curve of eight validated models, including logistic regressions on clinical variables and radiologist nodule characterizations, 
artificial intelligence (AI) on chest CT scans, longitudinal imaging AI, and multimodal approaches for prediction of lung cancer risk was assessed in nine 
cohorts (n = 898, 896, 882, 219, 364, 117, 131, 115, 373) from multiple institutions. Each model was implemented from their published literature, and 
each cohort was curated from primary data sources collected over periods from 2002 to 2021.

Results:  No single predictive model emerged as the highest-performing model across all cohorts, but certain models performed better in specific clinical 
contexts. Single-time-point chest CT AI performed well for screening-detected nodules but did not generalize well to other clinical settings. Longitudinal 
imaging and multimodal models demonstrated comparatively good performance on incidentally detected nodules. When applied to biopsied nodules, all 
models showed low performance.

Conclusion:  Eight lung cancer prediction models failed to generalize well across clinical settings and sites outside of their training distributions.
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The plethora of research is promising, but several concerns 
arise when considering the clinical utility of predictive models 
in lung cancer diagnostics. First, the comparative advantage of 
AI models versus commonly used linear models has not been 
quantitatively characterized in settings where a predictive model 
would arguably have the most impact. Second, almost all of the 
AI models are, to some extent, trained on lung screening scans 
from the National Lung Screening Trial (NLST) (21), which 
raises the question of whether they generalize across institutions 
and to patients with incidentally detected nodules and metasta-
ses to the lung from other sites. Third, these models predict dif-
ferent outcomes. Some assess the risk of developing lung cancer 
over a multiyear period, whereas others estimate the probability 
that an observed pulmonary nodule is malignant. A compara-
tive analysis of these models using a standardized outcome (eg, 
2-year diagnosis of lung cancer) can inform “off-label” use of 
models but has not yet been performed. Finally, there is an ur-
gent need to risk stratify intermediate-risk nodules and reduce 
the number of biopsies on nodules that appear indeterminate 
but are diagnosed as benign. To our knowledge, a systematic 
analysis of how existing models perform in this setting has not 
been performed.

This study aimed to evaluate eight validated lung cancer 
prediction models on cohorts with screening-detected nodules, 
incidentally detected nodules collected in both retrospective 
and prospective fashion, and nodules that underwent a bron-
choscopic biopsy. These different settings are where we envision 
a well-designed predictive model will have a tangible impact on 
patient care. We implemented each model from their published 

code repositories and curated each cohort from their primary 
available source.

Materials and Methods

Cohorts
The data included in this retrospective study were sourced from 
the NLST, through the Cancer Data Access System, and our 
Vanderbilt University Medical Center (VUMC). This study also 
included data from the Consortium for Molecular and Cellu-
lar Characterization of Screen-Detected Lesions (MCL), which 
includes the Veterans Affairs facility associated with VUMC, 
University of Pittsburgh Medical Center (UPMC), Detection 
of Early Lung Cancer Among Military Personnel (DECAMP), 
and University of Colorado Denver (UCD). We derived 10 
named cohorts from these sites using different inclusion criteria 
(Table 1). We obtained CT scans, demographics, and question-
naire data from the CT arm of the NLST upon request with 
a data use agreement (https://cdas.cancer.gov/learn/nlst/images/). 
Data from the Vanderbilt Lung Screening Program (VLSP) co-
hort were acquired under our home institutional review board 
supervision (no. 181279). Data from the Longitudinal Inci-
dental VUMC (LI-VUMC) and BRONCH (biopsied nodules) 
cohorts were acquired under institutional review board supervi-
sion (no. 140274). Data from the VUMC cohort were acquired 
under institutional review board supervision (no. 030763 and 
000616). Data from the UPMC, UCD, and DECAMP co-
horts were acquired via academic collaborations under different 
grants. Acquisition of data from these cohorts was compliant 
with the Health Insurance Portability and Accountability Act. 
Regarding patients who have been previously reported, the 
NLST is a widely studied public dataset. Portions of the VLSP 
cohort have been reported in Li et al (22) (n = 1189) and Gao 
et al (20) (n = 147), and the LI-VUMC cohort was previously 
reported in Li et al (23) and Li et al (24). Patients from VUMC, 
PUMC, UCD, and DECAMP have been previously studied in 
Gao et al (19) (n = 1331) and Kammer et al (25) (n = 457).

Image Preprocessing
We used a documented pipeline (26) that includes algorithmic 
analysis and manual visual assessment to ensure every scan used in 
this study passed certain image quality standards (Fig 1). Specifi-
cally, we excluded scans with severe imaging artifacts, scans with a 
section thickness greater than or equal to 5 mm, and scans without 
the full lung field in the field of view. A total of 713 studies were 
excluded because of insufficient quality (Fig S1). Patient health 
information was removed using the MIRC Anonymizer (27).

Predictive Models
We selected an array of models for lung cancer prediction (Ta-
ble 2), including models designed to estimate lung cancer risk 
(ie, Sybil) as well as models designed to predict the malignancy 
probability of a pulmonary nodule. We included the Brock (9) 
and Mayo (8) models because they are among the most cited, val-
idated, and used in clinical practice. We studied several AI models 
incorporating a range of approaches that would allow us to exam-
ine the efficacy of three strategies: Liao et al (14) and Sybil (15) as  
single-time-point chest CT approaches, Distanced Long Short-

Abbreviations
AUC = area under the receiver operating characteristic curve, AI = 
artificial intelligence, DECAMP = Detection of Early Lung Cancer 
Among Military Personnel, LI-VUMC = Longitudinal Inciden-
tal-VUMC, MCL = Consortium for Molecular and Cellular Char-
acterization of Screen-Detected Lesions, NSCLC = non–small cell 
lung cancer, NLST = National Lung Screening Trial, SCLC = small 
cell lung cancer, UCD = University of Colorado Denver, UPMC = 
University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung 
Screening Program, VUMC = Vanderbilt University Medical Center

Summary
The performance of eight different statistical models for lung cancer 
prediction depended heavily on the clinical setting they were applied 
in, and models generalized poorly on sites outside of their training 
distributions.

Key Points
	■ Models predicting lung cancer risk from a single time point had a 

higher area under the receiver operating characteristic curve (AUC) 
for patients who underwent lung cancer screening but performed 
worse in patients with incidentally detected nodules relative to 
other models.

	■ Longitudinal models and multimodal models had comparatively 
high AUCs for patients with incidentally detected nodules but 
showed lower performance than single-time-point models in lung 
cancer screening cohorts.

	■ Both clinical variable–based models and artificial intelligence–based 
models performed poorly in patients with pulmonary nodules who 
were triaged for invasive biopsies.

Keywords
Diagnosis, Classification, Application Domain, Lung
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Table 1: Cohort Inclusion and Exclusion Criteria

Cohort Inclusion and Exclusion Criteria

NLST-test Patients correspond to the Ardila et al (18) test set. These patients were not evaluated by any of the predictive 
models in this study. Lung cancer events were the biopsy-confirmed lung cancers reported by the NLST. Pa-
tients without a confirmed outcome were excluded from this study.

NLST-test-nodule Subset of the NLST-test cohort in which included patients had at least one positive nodule finding from their CT 
examinations as defined in the NLST (≥4 mm).

NLST-dev All patients enrolled in the CT arm of the NLST and not part of NLST-test. Those without available imaging or 
without a confirmed outcome were excluded.

VLSP Patients meeting the American Cancer Society criteria for lung screening and who were enrolled in the lung 
screening program at VUMC from 2015 to 2018. Patients receive longitudinal follow-up after a positive screen 
and lung cancer events were confirmed via biopsy reports. Nodule characteristics are missing because radiology 
reports were not available.

LI-VUMC Patients from VUMC who underwent three chest CT examinations within 5 years between 2012 and 2019. 
These patients were identified through ICD codes to have a pulmonary nodule and no cancer before the nod-
ule. We defined lung cancer outcomes through ICD codes representing any malignancy found in the bronchus 
or lung parenchyma, including metastases from other sites (23). Nodule characteristics are missing because 
radiology reports were not available.

MCL-VUMC Prospectively enrolled patients from VUMC and its associated Veterans Administration facility between 2003 and 
2017. Cohorts prefixed with “MCL-” meet the following inclusion criteria. Patients must be aged 18–80 years 
and were detected incidentally to have a pulmonary nodule with a diameter between 6 and 30 mm. Patients 
consented at initial nodule detection, and serum test and CT scan were acquired at that time. Longitudinal 
imaging and biopsy-confirmed diagnosis for malignant nodules were collected during a 2-year period following 
initial nodule detection.

MCL-UPMC Prospectively enrolled patients from UPMC according to consortium inclusion criteria. Longitudinal imaging 
after initial nodule detection was not available.

MCL-DECAMP Prospectively enrolled patients from 12 clinical centers associated with the DECAMP (36) study protocol. Of 
note, cases and controls are matched on nodule size.

MCL-UCD Prospectively enrolled patients from UCD according to MCL inclusion criteria. Longitudinal imaging after initial 
nodule detection was not available.

BRONCH Prospectively collected cohort of patients who underwent a bronchoscopic lung biopsy for a pulmonary nodule 
(defined as a lesion <3 cm) at the lung nodule clinic of VUMC between the years of 2017 and 2019. The 
subsequent biopsy report from the bronchoscopy was used to determine benign versus malignant status of the 
nodule.

Note.—BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of Early Lung 
Cancer Among Military Personnel, ICD = International Classification of Diseases, MCL = Consortium for Molecular and Cellular Character-
ization of Screen-Detected Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of 
Pittsburgh Medical Center, VUMC = Vanderbilt University Medical Center.

Figure 1:  Flowchart of image quality assurance pipeline for each cohort. Exclusion criteria included severe artifact, nonstandard 
chest or body orientation, field of view that did not fully include the lung, and section thickness over 5 mm. BRONCH = cohort of pa-
tients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel, 
LI-VUMC = Longitudinal Incidental-VUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected 
Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical 
Center, VLSP = Vanderbilt Lung Screening Program, VUMC = Vanderbilt University Medical Center.
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Term Memory (16) and Time-distance Vision Transformer (17) 
as a longitudinal chest CT approaches, and DeepLungScreening 
(20) and DeepLungIPN (19) as models with multimodal inputs.

We split patients with confirmed follow-up in the NLST 
into development (NLST-dev) and test (NLST-test) sets. 
NLST-test contains the patients in the Ardila et al (18) test 
set who had confirmed follow-up, and these scans remained 
unseen until evaluation. NLST-dev was used to retrain, from 
random weights, several of the models using a standardized 
2-year lung cancer outcome. The purpose of retraining was 
to ensure that the models were not trained on NLST-test and 
to standardize the predicted outcome across each model. Spe-
cifically, the years between initial observation of the patient 
and the outcome, or year-to-outcome, was not standardized 

across the evaluated models (Table 2). Models developed us-
ing a shorter year-to-outcome have an easier task than models 
developed using a longer year-to-outcome. In this way, differ-
ences in year-to-outcomes can confound model comparisons. 
For longitudinal imaging models, the outcome was whether 
the patient was diagnosed with lung cancer within 2 years of 
the patient’s latest scan. The logistic regression models were 
not retrained and were evaluated as published because they 
were already blinded to NLST-test and we did not have their 
original development dataset, which is needed to control for 
year-to-outcome. Sybil was also evaluated as published be-
cause the model was already blinded to NLST-test and its pre-
diction includes a 2-year outcome. Last, DeepLungIPN was 
originally trained using a cross-validation of MCL-VUMC, 

Table 2: Lung Cancer Predictive Model Characteristics

Model
Year  
Published Input

Training  
Distribution

Cancer  
Prevalence Outcome Criteria Approach

Mayo (8) 1997 Age, PH, SS, NSpic, 
NUL, NSize*

Mayo Clinic 
(n = 419)

23% 2-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

Logistic regression

Brock (9) 2013 Age, Sex, FH, Emp, 
Nsize, Nspic 
NUL, Ncount, 
Ntype†

PanCan (n = 
1871)

5.5% 2-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

Logistic regression

Liao et al (14) 2017 Single chest CT NLST-dev
(n = 5436)

17% 1-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

ResNet, nodule detec-
tion, and ROI-based 
prediction

Sybil (15) 2023 Single chest CT NLST-dev (n = 
12 672)

17% Up to 6-year LC risk 
proven via tissue 
biopsy or no findings 
at follow-up

ResNet, global chest 
features, and guided 
attention

DLSTM (16) 2020 Longitudinal chest 
CT

NLST-dev
(n = 5436)

17% 6-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

LSTM network, ROI-
based prediction, 
encodes time interval 
between scans

TdViT (17) 2023 Longitudinal chest 
CT

NLST-dev
(n = 5436)

17% 6-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

Transformer network, 
ROI-based prediction, 
encodes time interval 
between scans

DeepLungScreening 
(20)

2021 Single chest CT, 
Age, Education, 
BMI, PH, FH, 
SS, Quit, PYR

NLST-dev
(n = 5436)

17% 2-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

ResNet, ROI-based 
prediction, late fusion 
of imaging and clinical 
features

DeepLungIPN (19) 2021 Single chest CT, 
Age, BMI, PH, 
SS, PYR, Nsize, 
NSpic, NUL, Se-
rum biomarker‡

MCL 
cross-valida-
tion§

(n = 1232)

59% 2-year LC risk proven 
via tissue biopsy or no 
findings at follow-up

DeepLungScreening, 
serum biomarker

Note.—BMI = body mass index, CYFRA = cytokeratin 19 fragment, DECAMP = Detection of Early Lung Cancer Among Military Per-
sonnel, DLSTM = Distanced LSTM, FH = family history of lung cancer, LC = lung cancer, NLST = National Lung Screening Trial, NSize 
= nodule size, NSpic = nodule spiculation present or absent, NUL = nodule in the upper lobes, Ntype = nodule type, Ncount = number of 
nodules, PYR = pack-years of smoking, PH = personal history of any cancer, Emp = presence of emphysema, Quit = years since the person 
quit smoking, ROI = region of interest, SD = smoking duration, SI = smoking intensity (average number of cigarettes smoked a day), SS = 
smoking status (former vs current smoker), TdViT = Time-distance Vision Transformer.
* Largest nodule diameter (mm).
† Categorized as nonsolid or with ground-glass opacity, part-solid, and solid.
‡ Serum concentration of hs-CYFRA 21–1 (natural log of ng/mL) (37).
§ Combination of MCL-VUMC, MCL-DECAMP, MCL-UCD.
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MCL-DECAMP, and MCL-UCD. This model was evaluated 
as published because it includes a blood biomarker that was 
only collected in the MCL cohorts.

Implementation and training of models followed their orig-
inal methodology unless otherwise specified. Details about the 
development site and training distribution are reported in Table 

Table 3: Cohort Characteristics

Cohort NLST-dev NLST-test
NLST-test-
nodule VLSP LI-VUMC VUMC UPMC DECAMP UCD BRONCH

Program type Screening Screening Screening Screening Screening, 
inciden-
tal

Incidental Incidental Incidental Incidental Bronchos-
copy

Institution MCL MCL MCL VUMC VUMC VUMC, 
VA 
VUMC

UPMC MCL UCD VUMC

Program period 2002–
2009

2002–
2009

2002–
2009

2015–
2018

2012–
2021

2003–
2017

2006–
2015

2013–
2017

2010–
2018

2017–2019

No. of patients 5436 898 896 882 219 364 117 131 115 373
No. of patients 

with lung 
cancer

901 (17) 149 (17) 147 (16) 24 (3.0) 37 (17) 238 (65) 48 (41) 64 (49) 57 (50) 230 (62)

No. of scans 14 748 2523 2440 1483 515 760 117 241 115 387
No. of scans 

with lung 
cancer

1866 (13) 313 (12) 298 (12) 51 (3.4) 50 (10) 517 (68) 48 (41) 100 (41) 57 (50) 240 (62)

Section thickness 
(mm)

2.1 ± 0.65 2.1 ± 0.42 2.1 ± 0.42 0.81 ± 
0.21

0.77 ± 
0.61

1.8 ± 1.1 2.2 ± 0.69 1.7 ± 0.91 1.4 ± 0.79 0.9 ± 0.38

Age (y) 62 ± 5.2 62 ± 5.2 62 ± 5.2 65 ± 5.8 59 ± 13 69 ± 11 68 ± 8.5 68 ± 7.9 66 ± 8.3 64 ± 12
Sex (male) 3270 (60) 546 (61) 546 (61) 483 (55) 109 (50) 165 (45) 49 (42) 30 (23) 31 (27) 168 (45)
BMI 28 ± 4.8 28 ± 4.9 28 ± 5.0 28.4 ± 6.0 27 ± 7.4 28 ± 6.5 28 ± 4.9 26 ± 5.4 29 ± 6.2 28 ± 6.8
Personal cancer 

history
256 (4.7) 43 (4.8) 43 (4.8) 135 (15) NA 129 (35) 3 (2.6) 65 (50) 13 (11) 194 (52)

Family lung can-
cer history

1194 (22) 179 (20) 177 (20) 149 (17) NA 41 (11) 0 0 10 (8.7) 88 (24)

Smoking status
  Never 0 0 0 0 NA 33 (9) 0 11 (8.4) 22 (19) 90 (24)
  Former 2781 (51) 469 (52) 468 (52) 357 (40) NA 195 (54) 76 (65) 67 (51) 54 (47) 214 (57)
  Current 2655 (49) 429 (48) 428 (48) 525 (60) NA 121 (33) 41 (35) 53 (40) 39 (34) 69 (18)
Smoking pack-

years
56 ± 25 59 ± 28 59 ± 28 48 ± 21 NA 47 ± 33 48 ± 23 50 ± 25 50 ± 33 29 ± 30

Nodule size 
(mm)

8.0 ± 6.2 7.9 ± 5.9 7.9 ± 5.9 NA NA 19 ± 13 16 ± 8.9 15 ± 7.0 18 ± 15 2.2 ± 1.3

Nodule count 1.2 ± 1.3 1.3 ± 1.2 1.3 ± 1.2 NA NA 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
Nodule attenu-

ation
  Solid 7494 (51) 1351 (54) 1351 (55) NA NA 725 (95) 99 (85) 241 (100) 115 (100) 325 (84)
  Part-solid 507 (3.4) 69 (2.7) 69 (2.8) NA NA 21 (2.8) 18 (15) 0 0 51 (13)
  Nonsolid or 

GGO
1439 (10) 241 (9.6) 241 (9.9) NA NA 14 (1.8) 0 0 0 11 (2.8)

Nodule spicula-
tion (present)

997 (6.7) 200 (7.9) 200 (8.2) NA NA 229 (30) 15 (13) 126 (52) 30 (26) 173 (45)

Nodule location
  Upper lobe 5554 (38) 996 (39) 996 (41) NA NA 447 (59) 63 (54) 143 (59) 71 (62) 203 (52)
  Lower lobe 4391 (30) 777 (31) 777 (32) NA NA 313 (41) 54 (46) 98 (41) 44 (38) 184 (48)

Note.—Data values are presented as means ± SDs or numbers of patients with percentages in parentheses. BMI = body mass index (calculat-
ed by dividing weight in kilograms by height in meters squared), BRONCH = cohort of patients who underwent bronchoscopic lung biopsy 
at VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel, GGO = ground-glass opacity, LI-VUMC = Longitu-
dinal Incidental-VUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not available, 
NLST = National Lung Screening Trial, NLST-dev = NLST development set, NLST-test = NLST test set, NLST-test-nodule = subset of 
NLST-test of patients with at least one positive nodule finding, UCD = University of Colorado Denver, UPMC = University of Pittsburgh 
Medical Center, VLSP = Vanderbilt Lung Screening Program, VUMC = Vanderbilt University Medical Center, VA = Veterans Affairs.
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S1. Apart from removing scans that did not meet our image qual-
ity standards, we did not add or remove any pre- or postprocess-
ing steps included in the models’ pipeline. The code supporting 
model training, evaluation, and statistical analysis is available at 
https://github.com/MASILab/lcancer_baselines. Code supporting 
this project is made available at https://github.com/MASILab/
lcancer_baselines.

Evaluation and Statistical Analysis
Evaluation included all the named cohorts except NLST-dev. 
A model-cohort evaluation was not feasible when a substan-
tial portion of the input data was missing, specifically when 
an input variable was missing in more than 10% of cohort 
patients (Table S2). When an input variable was missing in 
less than 10% of patients, we conducted an evaluation us-

ing imputation based on a multivariable regression of the 
other available variables. The effect of imputation on model 
performance is shown in Table S3. We did not evaluate 
longitudinal imaging models (Distanced Long Short-Term 
Memory and Time-distance Vision Transformer) on cohorts 
in which longitudinal imaging was unavailable. When eval-
uating DeepLungIPN on the consortium cohorts, we report 
the out-of-fold cross-validation results.

We used AUC to measure model performance for classifying 
lung cancer cases and benign controls. For each model-cohort 
evaluation, we used a bootstrapping procedure to estimate the 
model’s performance on the cohort’s true population. The proce-
dure drew 1000 samples of the same size with replacement from 
the original cohort. Each model’s AUC was calculated for each 
sample, and we reported the mean AUC and 95% CI over all 

Table 4: Model Classification of n-year Lung Cancer Risk across Selected Cohorts

Classification
NLST-test 
(n = 898)

NLST-test-
nodules  
(n = 896)

VLSP  
(n = 882)

LI-VUMC  
(n = 219)

MCL-
VUMC  
(n = 364)

MCL-UP-
MC  
(n = 117)

MCL- 
DECAMP  
(n = 131)

MCL-
UCD  
(n = 115)

BRONCH 
(n = 373)

Average 
Rank

Input Model
Clinical 

variables
Mayo NA* 0.804 

[0.798, 
0.809]

NA* NA* 0.706 
[0.704, 
0.708]

0.864 
[0.862, 
0.867]

0.568 
[0.565, 
0.571]

0.716 
[0.712, 
0.719]

0.621 
[0.615, 
0.628]

3.5 (7–1) 
n = 6

Clinical 
variables

Brock NA* 0.789 
[0.782, 
0.796]

NA* NA* 0.716 
[0.714, 
0.718]

0.885 
[0.883, 
0.886]

0.662 
[0.659, 
0.666]

0.713 
[0.710, 
0.716]

0.497 
[0.494, 
0.499]

3.2 (5–2) 
n = 6

Single CT 
AI

Liao et 
al

0.751 
[0.747, 
0.756]

0.755 
[0.750, 
0.759]

0.723 
[0.712, 
0.734]

0.644 
[0.635, 
0.653]

0.662 
[0.660, 
0.664]

0.779 
[0.776, 
0.782]

0.706 
[0.703, 
0.709]

0.660 
[0.656, 
0.663]

0.621 
[0.614, 
0.628]

3.9 (6–1) 
n = 9

Single CT 
AI

Sybil 0.881 
[0.877, 
0.885]†

0.879 
[0.872, 
0.885]†

0.779 
[0.768, 
0.789]

0.763 
[0.756, 
0.770]

0.700 
[0.694, 
0.706]

0.889 
[0.884, 
0.895]

0.606 
[0.597, 
0.616]

0.764 
[0.756, 
0.772]

0.623 
[0.618, 
0.629]

2.6 (6–1) 
n = 9

Longitudi-
nal CT 
AI

DLSTM 0.738 
[0.734, 
0.743]

0.727 
[0.721, 
0.731]

NA ‡ 0.711 
[0.702, 
0.720]

0.743 
[0.741, 
0.745]

NA§ 0.778 
[0.774, 
0.781]

NA § NA§ 3.6 (6–2) 
n = 5

Longitudi-
nal CT 
AI

TDViT 0.797 
[0.793, 
0.802]

0.790 
[0.785, 
0.794]

NA‡ 0.773 
[0.764, 
0.781]†

0.753 
[0.750, 
0.755]

NA§ 0.823 
[0.820, 
0.825]†

NA § NA § 1.8 (3–1) 
n = 5

Multimod-
al

DLS 0.783 
[0.778, 
0.788]

0.776 
[0.771, 
0.782]

0.810 
[0.799, 
0.820] †

NA║ NA║ NA║ NA║ NA║ NA║ 2.7 (4–1) 
n = 3

Multimod-
al

DLI NA║ NA║ NA║ NA║ 0.856 
[0.854, 
0.858]†

0.936 
[0.935, 
0.938]†

0.742 
[0.739, 
0.745]

0.851 
[0.849, 
0.854]†

NA† 1.5 (3–1) 
n = 4

Note.—Except where indicated, data are bootstrapped mean areas under the receiver operating characteristic curve, with 95% CIs in 
brackets. The data in Average Rank are average, range, and the number of cohort evaluations performed. The n-year lung cancer risk for 
each cohort was 2-year risk for each cohort except LI-VUMC, which was 3-year risk, and BRONCH, which was 1-year risk. AI = artificial 
intelligence, BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, COPD = chronic obstructive pulmo-
nary disease, CYFRA = cytokeratin 19 fragment, DLI = DeepLungIPN, DLS = DeepLungScreening, DECAMP = Detection of Early Lung 
Cancer Among Military Personnel, DLSTM = Distanced LSTM, LI-VUMC = Longitudinal Incidental-VUMC, MCL = Consortium for 
Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not available, NLST = National Lung Screening Trial, NLST-
test = NLST test set, NLST-test-nodule = subset of NLST-test of patients with at least one positive nodule finding, TdViT = Time-distance 
Vision Transformer, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung 
Screening Program, VUMC = Vanderbilt University Medical Center. 
* Nodule characteristics unavailable (missing >10% of nodule size, attenuation, count, spiculation, or lobe location).
† Result was significantly different compared with each other method in the column for P < .01.
‡ Prohibitive class imbalance (only six of 23 patients with lung cancer have more than one scan).
§ No longitudinal imaging.
║ Missing demographic, smoking history, COPD, or CYFRA covariates.
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bootstrapped samples. A two-sided Wilcoxon signed rank test 
was used to evaluate significance of differences (significant at P 
< .05) in mean AUC between models within a single cohort. We 
did not test statistical differences across cohorts because patients 
were not paired across cohorts.

Model performance for non–small cell lung cancer (NS-
CLC) versus small cell lung cancer (SCLC) cases were compared 
in NLST-test nodules and MCL-VUMC. The mean AUC and 
95% CI of each model was computed using the same bootstrap 
procedure drawn from the pool of patients with benign nodules 
and patients with either SCLC or NSCLC. An unpaired t test 
was used to evaluate whether the discrimination of a model of 
malignant versus benign was significantly different (significant at 
P < .05) with these two lung cancer subtypes.

An analysis of calibration before and after confidence correction 
was conducted. In each model-cohort evaluation, 10-fold cross-val-
idation was used to fit isotonic regressions on the training set of 
each fold. Calibration was then evaluated on the validation set of 
each fold (Figs S2–S5). All statistical analyses were performed in 
Python version 3.8 with support from the SciPy package.

Results

Cohort Characteristics
The size of the evaluation cohorts ranged from 898 patients 
(NLST-test) to 115 patients (MCL-UCD). Mean age ranged 
from 59 years with an SD of 13 (LI-VUMC) to 69 years with an 
SD of 11 (MCL-VUMC). Male sex proportion ranged from as 
low as 23% (MCL-DECAMP) to as high as 61% (NLST-test). 

Cancer prevalence in the biopsied nodules cohort (BRONCH: 
62%) was the highest, followed by incidentally detected nodules 
(MCL-VUMC: 65%, MCL-UPMC: 41%, MCL-DECAMP: 
49%, MCL-UCD: 50%), and the screening cohorts (NLST-
test: 17%, VLSP: 3%, LI-VUMC: 17%). Mean smoking pack-
years fell within 47 to 59 years except for the biopsied nodules 
cohort, which had a mean pack-year of 29 years due to the high 
proportion of never-smokers. Overall cohorts were distributed 
differently in terms of cancer prevalence, demographics, smok-
ing background, and nodule characteristics (Table 3).

Model Performance
Table 4 reports the mean AUCs and 95% CIs for each feasible 
model-cohort evaluation. Table S4 also reports corresponding 
sensitivity and specificity using an optimal cut-point for each 
model-cohort evaluation. Comparing the results rowwise re-
veals that almost all predictive models exhibited noticeable dif-
ferences in performance across cohorts (Fig 2A).

The performance gaps were the largest between cohorts from 
different sites and different clinical settings (ie, Brock on NLST-
test-nodules: 0.789 [0.782, 0.796] vs Brock on MCL-DE-
CAMP: 0.662 [0.659, 0.66]). The performance gap remained 
large between cohorts from different sites but the same clinical 
setting (ie, Sybil on NLST-test: 0.881 [0.877, 0.885] vs Sybil 
on VLSP: 0.779 [0.768, 0.789]). In contrast, the performance 
gap between different cohorts from the same site but differ-
ent clinical setting was generally smaller (ie, Liao et al on LI-
VUMC: 0.644 [0.635, 0.653] vs Liao et al on MCL-VUMC: 
0.662 [0.660, 0.664]).

Figure 2:  (A) Mean area under the receiver operating characteristic curve (AUC) for all lung cancer prediction models applied on all study cohorts. Almost all methods 
demonstrate a high degree of variance in performance across cohorts within most methods, which demonstrates the importance of contextualizing a model’s performance by 
comparing it with the performance of baseline models. Darker shading indicates better AUC performance. The 95% CIs are shown on Figure S6. (B) Best- and worst-case 
performance for eight predictive models reveals robust performance of longitudinal and multimodal AI methods (ie, Time-distance Vision Transformer [TDViT], Distanced Long 
Short-Term Memory [DLSTM], DeepLungScreening [DLS], DeepLungIPN [DLI]) compared with other models. A model’s worst-case performance is defined as its lowest 
ranked performance across all cohorts except BRONCH. BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of 
Early Lung Cancer Among Military Personnel, LI-VUMC = Longitudinal Incidental-VUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-De-
tected Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung 
Screening Program, VUMC = Vanderbilt University Medical Center. 

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 7: Number 2—2025  ■  radiology-ai.rsna.org� 8

Lung Cancer Prediction Models for Pulmonary Nodules Li et al

Comparing the relative performances between multiple mod-
els across cohorts highlights the following findings. Single chest 
CT AI (Liao et al and Sybil) performed well in lung cancer screen-
ing cohorts (ie, Sybil model on NLST-test: AUC, 0.881 [95% CI: 
0.887, 0.885]) (Fig 3A). These models were generally competitive 
with linear models while longitudinal and multimodal AI signifi-
cantly outperformed linear models in every cohort. Results for 
MCL-UPMC represent this well, with Sybil (AUC, 0.889 [95% 
CI: 0.884, 0.895]) performing close to Brock (AUC, 0.885 [95% 
CI: 0.883, 0.886]), and DeepLungIPN (AUC, 0.936 [95% CI: 
0.935, 0.938]) outstripping the performance of both.

Longitudinal or multimodal AI were top performers across 
all cohorts with incidental nodules (Figs 3, 4). They showed 
better worst-case performances in comparison to the other ap-
proaches (Fig 2B). Ranking the results within each cohort, we 

define a model’s worst case as its lowest ranked performance 
across all cohorts except BRONCH. The worst-case perfor-
mances of Distanced Long Short-Term Memory (on NLST-
test nodules: AUC, 0.727 [95% CI: 0.721, 0.731]), Time-dis-
tance Vision Transformer (on NLST-test nodules: AUC, 0.790 
[95% CI: 0.785, 0.794]), DeepLungScreening (on NLST-test 
nodules: AUC, 0.776 [95% CI: 0.7771, 0.782]), and Deep-
LungIPN (on MCL-DECAMP: AUC, 0.742 [95% CI: 0.739, 
0.745]) were all moderate in terms of absolute AUC. In con-
trast, the worst-case performance of Mayo, Brock, Liao et al, 
and Sybil were low in terms of absolute AUC.

Models evaluated on the BRONCH cohort, representing 
nodules that are suspicious enough to warrant a biopsy, per-
formed poorly, with mean AUCs ranging from 0.497 to 0.623 
(Fig 4).

Figure 3:  Box and whiskers plot shows areas under the receiver operating characteristic curves (AUCs) of 1000 bootstrapped samples from applying three selected 
methods across all study cohorts. Brock and Liao et al are selected as baselines to compare with the method achieving the highest classification performance in the corre-
sponding cohort. The best performing method differs across cohorts. Among baselines and the best performers, bootstrapped AUC distributions demonstrate high variance 
across cohorts. DeepLungScreening (DLS) seems to perform the best in the cohorts with incidental nodules (MCL cohorts). Unsurprisingly, Time-distance Vision Transformer 
(TDViT) excels in the Longitudinal Incidental-VUMC imaging cohort (LI-VUMC). The box and line within the box denote the IQR and median, respectively. The whiskers 
denote 1.5 times the IQR, and points outside the whiskers denote outliers beyond this range. BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at 
VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions, 
NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung Screening Program, 
VUMC = Vanderbilt University Medical Center.

Figure 4:  Receiver operating characteristic (ROC) curves demonstrate a failure to generalize across four select cohorts. Top performers in lung screening cohorts (A) 
are different than the top performers in cohorts with incidentally detected nodules (B), and vice versa. (C) All evaluated models performed poorly on a retrospective cohort of 
patients selected to undergo diagnostic bronchoscopic biopsy (BRONCH) for a pulmonary nodule at VUMC. ROC curves for remaining evaluation cohorts are provided in 
Figure S7. DLS = DeepLungScreening, DLSTM = Distanced Long Short-Term Memory, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected 
Lesions, TDViT = Time-distance Vision Transformer, VUMC = Vanderbilt University Medical Center. 
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AI models discriminated NSCLC cases from benign findings 
better than SCLC cases (Table 5) in the lung screening setting 
(AUC for Sybil on NLST-test was 0.899 [95% CI: 0.897, 0.900] 
for NSCLC vs 0.728 [95% CI: 0.723, 0.733] for SCLC). In 
both lung screening and incidentally detected nodules, longi-
tudinal models demonstrated better performance with NSCLC 
cases compared with SCLC cases (AUC for Time-distance Vi-
sion Transformer on MCL-VUMC was 0.760 [95% CI: 0.757, 
0.763] for NSCLC vs 0.667 [95% CI: 0.661, 0.673] for SCLC).

Discussion
The most prominent result of our study was perhaps that there 
was no clear winner among the models evaluated. The per-
formance of each model varied with site and clinical setting, 
which reflects a moderate degree of generalization failure that 
is often observed in both open-source and commercial pre-
dictive models across many medical domains (28). Those in-
terested in using predictive models in lung cancer should be 
aware that these models, despite previous reports of successful 
external validation, most reliably achieve their expected per-
formance when they are used in the same clinical context and 
site as they were developed in (29). Those involved in model 
deployment should consider fine-tuning models with a cohort 
that matches the site, clinical setting, and year-to-outcome in 
which the model will be used. Steps should be taken during 
model development to mitigate a failure to generalize when 
site and setting are unmatched with techniques such as image 
harmonization (30), fine-tuning (31), and potentially directly 
modeling the site-specific effects (30). These results motivate 
further investigation into the site- and context-specific factors 
that are driving a variance in performance and how they can 
be harmonized.

This study reveals the importance of interpreting a model’s 
performance relative to the performance of other models on 
the same cohort. Doing so revealed several findings that were 
sustained across cohorts. Single chest CT AI (Liao et al and 
Sybil models) performed on par with linear models that in-
cluded nodule variables (Mayo and Brock). As demonstrated 
previously (9,10,15), single chest CT AI is well suited for 
identifying individuals at risk for lung cancer who can benefit 
from starting or having more frequent lung imaging. Longi-
tudinal and multimodal models demonstrated comparatively 
favorable performance on incidentally detected nodules. In 
contrast to other models, longitudinal and multimodal AI also 
appeared to be more robust across cohorts, as seen from their 
worst-case performances.

Given that nodules in the BRONCH cohort were inherently 
difficult to diagnose, the poor performance on this cohort was 
unsurprising. Because of missing data, we were not able to evalu-
ate longitudinal and multimodal AI on BRONCH. A predictive 
model that is highly specific for lung cancer in this setting has 
the potential to prevent invasive management of benign nodules. 
Therefore, evaluation of longitudinal and multimodal AI on a 
retrospective cohort of biopsied nodules is a high priority area for 
future investigation.

Longitudinal imaging models performed better on NSCLC 
than SCLC. One explanation for this is that NSCLC is, on aver-
age, observed more frequently as an indeterminant nodule com-
pared with faster progressing SCLC, which is often an advanced 
stage at first observation (32). These results warn that longitudi-
nal imaging models may underperform on SCLC cases.

The regression calibrator improved calibration for most mod-
els evaluated on the NSLT, MCL, and BRONCH cohorts. Cal-
ibration remained poor or became worse for models evaluated 

Table 5: Model Classification of Lung Cancer Risk by Cancer Subtype

Model

NLST-test Nodules* MCL-VUMC†

SCLC (n = 18) NSCLC (n = 119) SCLC (n = 39) NSCLC (n = 194)

Mayo NA‡ 0.810 (0.808, 0.812) 0.774 (0.772, 0.776) 0.683 (0.681, 0.685)
Brock NA‡ 0.792 (0.790, 0.794) 0.794 (0.792, 0.797) 0.688 (0.687, 0.690)
Liao et al 0.683 (0.680, 0.687) 0.770 (0.768, 0.771) 0.617 (0.614, 0.620) 0.688 (0.686, 0.690)
Sybil 0.728 (0.723, 0.733)§ 0.899 (0.897, 0.900)§ 0.701 (0.698, 0.703) 0.701 (0.699, 0.702)
DLSTM 0.663 (0.658, 0.668) 0.808 (0.806, 0.809) 0.730 (0.726, 0.735) 0.754 (0.751, 0.757)
TDViT 0.707 (0.702, 0.711) 0.771 (0.769, 0.773) 0.667 (0.661, 0.673) 0.760 (0.757, 0.763)
DLS 0.659 (0.654, 0.664) 0.792 (0.791, 0.794) NA║ NA║

DLI NA║ NA║ 0.904 (0.901, 0.907)§ 0.853 (0.851, 0.855)§

Note.—Data are bootstrapped mean areas under the receiver operating characteristic curve, with 95% CIs in paren-
theses. DLI = DeepLungIPN, DLS = DeepLungScreening, DLSTM = Distanced LSTM, NSCLC = non–small cell 
lung cancer, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not 
available, NLST-test-nodule = subset of National Lung Screening Trial-test of patients with at least one positive nodule 
finding, SCLC = small cell lung cancer, TdViT = Time-distance Vision Transformer, VUMC = Vanderbilt University 
Medical Center.
* n malignant = 147, n benign = 749.
† n malignant = 238, n benign = 126
‡ Prohibitive class imbalance (n = 5).
§ Result was significantly different compared with every other method in the column for P < .01.
║ Model evaluation not performed in these cases because the required covariates were missing (demographics, smoking 
history, chronic obstructive pulmonary disease, cytokeratin 19 fragment).
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on highly imbalanced cohorts (VLSP and LI-VUMC), which 
align with previous findings (33).

Within the AI approaches, leveraging additional sources 
complementary data appears to be an effective strategy for im-
proving classification performance. For instance, Sybil makes use 
of the entire chest, whereas Liao et al predicts cancer based on 
a few regions of interest, a technique that crops out portions of 
the lung field and discards the overall chest anatomy. Addition-
ally, using longitudinal imaging that, when available, leads to 
performance gains across most of the cohorts. The integration 
of two or more consecutive chest CT studies allows the model 
to consider how imaging features change over time. The use of 
data from multiple modalities also appears to be effective. From 
a clinical perspective, the advantage of a multimodality approach 
is expected, because imaging findings are often interpreted in the 
context of the patient’s clinical risk factors. The improved perfor-
mance of longitudinal AI and multimodal AI in this study sug-
gest that combining the two approaches is a promising direction.

We note the following limitations of our study. Because the 
evaluation cohorts are from 2002 to 2021, we expect different 
numerical results on cohorts drawn from current practice but a 
similar failure to generalize across clinical context and site. Several 
model-cohort evaluations were not conducted because of incom-
plete data. Extreme class imbalance in the model training cohort 
is another confounding factor that can affect a model’s sensitivity 
and specificity. This is concerning for the Brock model, which 
was trained on a cohort with a cancer prevalence much smaller 
than those of other models. Other confounding sources include 
the differences in cohort size, scanner manufacturers, and scanner 
protocols (34,35). Finally, the evaluation of DeepLungIPN on its 
training cohort is limited because the results are from cross-vali-
dation. However, it still performed well when evaluated on a true 
external cohort (MCL-UPMC).

In summary, this study presents a comparative analysis of 
eight lung cancer prediction models against nine cohorts that 
represent clinically relevant use cases. Our results revealed a lack 
of generalized performance and showed that certain modeling 
strategies excelled in lung screening versus incidentally detected 
nodules, and all models fell short in a cohort with biopsied nod-
ules. We highlight approaches in lung cancer predictive modeling 
that, if investigated further, have the potential to overcome these 
observed limitations.
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