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Purpose:  To evaluate the performance of eight lung cancer prediction models on patient cohorts with screening-detected, incidentally detected, and bron-

choscopically biopsied pulmonary nodules.

Materials and Methods:  This study retrospectively evaluated promising predictive models for lung cancer prediction in three clinical settings: lung cancer
screening with low-dose CT, incidentally detected pulmonary nodules, and nodules deemed suspicious enough to warrant a biopsy. The area under the
receiver operating characteristic curve of eight validated models, including logistic regressions on clinical variables and radiologist nodule characterizations,
artificial intelligence (AI) on chest CT scans, longitudinal imaging Al, and multimodal approaches for prediction of lung cancer risk was assessed in nine
cohorts (7 = 898, 896, 882, 219, 364, 117, 131, 115, 373) from multiple institutions. Each model was implemented from their published literature, and
each cohort was curated from primary data sources collected over periods from 2002 to 2021.

Results:  No single predictive model emerged as the highest-performing model across all cohorts, but certain models performed better in specific clinical
contexts. Single-time-point chest CT Al performed well for screening-detected nodules but did not generalize well to other clinical settings. Longitudinal
imaging and multimodal models demonstrated comparatively good performance on incidentally detected nodules. When applied to biopsied nodules, all

models showed low performance.

Conclusion:  Eight lung cancer prediction models failed to generalize well across clinical settings and sites outside of their training distributions.

Supplemental material is available for this article.
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very year, an estimated 1.57 million Americans have at least
Eone pulmonary nodule detected either incidentally at rou-
tine chest CT or during lung cancer screening (1). Although
biopsy of the nodule remains the reference standard diagnostic
test for malignancy, it involves an invasive procedure associat-
ed with morbidity, mortality, additional health care costs, and
anxiety for patients (2,3). With 95% of indeterminate pulmo-
nary nodules found to be benign (4), clinical guidelines (1,5-7)
recommend risk-stratifying nodules before resorting to invasive
diagnostics and surgical intervention. Statistical models for
predicting lung cancer have the potential to improve this risk
stratification, aiding in earlier diagnosis of malignancy as well
as reducing morbidity, costs, and anxiety associated with the
workup of benign disease.

Validated predictive models developed to stratify pulmonary
nodules consist of clinical prediction models, cross-sectional or
longitudinal artificial intelligence (AI) models, and multimodal
approaches. We consider a predictive model validated if it has
demonstrated competitive discriminatory performance (area un-
der the receiver operating characteristic curve [AUC] above 0.75)
on a separate test cohort. The Brock (8) and Mayo (9) models
are two of the most used models in clinical practice and recom-
mended by clinical guidelines. They are well validated logistic
regressions and are based on readily available variables, such as
demographics (10), smoking history, and radiologist assessment

of nodule features. However, they require radiologists to first de-
tect and characterize the nodule, a step that can be subject to
interreader variability (11-13).

Recent research has validated several Al models for cancer pre-
diction. These operate directly on the voxels of the image, negat-
ing the need for radiologists to first describe nodule morphology
or measure sizes. One of the early Al successes in lung cancer
prediction was the study by Liao et al (14). Their two-step ap-
proach involved first detecting suspicious lesions in the lung field
from a single chest CT image and then computing malignancy
risk from the proposed regions of interest. Recently, Mikhael et
al (15) publicly released Sybil, a predictive model that extracts
global chest features along with regional attention features to pre-
dict lung cancer risk up to 6 years.

Previous work has also leveraged Al on longitudinal imag-
ing. Gao et al (16) and Li et al (17) extended the work of Liao
et al (14) to leverage consecutive chest CT scans and the time
between scans. In another longitudinal imaging approach, Ar-
dila et al (18) demonstrated impressive AUC performance of a
model including global chest features outside of local regions
of interest, but their model was not released publicly. Recently,
efforts that leveraged data from multiple modalities have shown
(19,20), with limited validation, that the combination of clin-
ical variables and imaging Al can improve performance over
single-modality approaches.
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Abbreviations

AUC = area under the receiver operating characteristic curve, Al =
artificial intelligence, DECAMP = Detection of Early Lung Cancer
Among Military Personnel, LI-VUMC = Longitudinal Inciden-
tal-VUMC, MCL = Consortium for Molecular and Cellular Char-
acterization of Screen-Detected Lesions, NSCLC = non—small cell
lung cancer, NLST = National Lung Screening Trial, SCLC = small
cell lung cancer, UCD = University of Colorado Denver, UPMC =
University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung
Screening Program, VUMC = Vanderbilt University Medical Center

Summary

The performance of eight different statistical models for lung cancer
prediction depended heavily on the clinical setting they were applied
in, and models generalized poorly on sites outside of their training
distributions.

Key Points

= Models predicting lung cancer risk from a single time point had a
higher area under the receiver operating characteristic curve (AUC)
for patients who underwent lung cancer screening but performed
worse in patients with incidentally detected nodules relative to
other models.

= Longitudinal models and multimodal models had comparatively
high AUC:s for patients with incidentally detected nodules but
showed lower performance than single-time-point models in lung
cancer screening cohorts.

= Both clinical variable—based models and artificial intelligence—based
models performed poorly in patients with pulmonary nodules who
were triaged for invasive biopsies.

Keywords
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The plethora of research is promising, but several concerns
arise when considering the clinical utility of predictive models
in lung cancer diagnostics. First, the comparative advantage of
Al models versus commonly used linear models has not been
quantitatively characterized in settings where a predictive model
would arguably have the most impact. Second, almost all of the
Al models are, to some extent, trained on lung screening scans
from the National Lung Screening Trial (NLST) (21), which
raises the question of whether they generalize across institutions
and to patients with incidentally detected nodules and metasta-
ses to the lung from other sites. Third, these models predict dif-
ferent outcomes. Some assess the risk of developing lung cancer
over a multiyear period, whereas others estimate the probability
that an observed pulmonary nodule is malignant. A compara-
tive analysis of these models using a standardized outcome (eg,
2-year diagnosis of lung cancer) can inform “off-label” use of
models but has not yet been performed. Finally, there is an ur-
gent need to risk stratify intermediate-risk nodules and reduce
the number of biopsies on nodules that appear indeterminate
but are diagnosed as benign. To our knowledge, a systematic
analysis of how existing models perform in this setting has not
been performed.

This study aimed to evaluate eight validated lung cancer
prediction models on cohorts with screening-detected nodules,
incidentally detected nodules collected in both retrospective
and prospective fashion, and nodules that underwent a bron-
choscopic biopsy. These different settings are where we envision
a well-designed predictive model will have a tangible impact on
patient care. We implemented each model from their published
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code repositories and curated each cohort from their primary
available source.

Materials and Methods

Cohorts

The data included in this retrospective study were sourced from
the NLST, through the Cancer Data Access System, and our
Vanderbilt University Medical Center (VUMC). This study also
included data from the Consortium for Molecular and Cellu-
lar Characterization of Screen-Detected Lesions (MCL), which
includes the Veterans Affairs facility associated with VUMC,
University of Pittsburgh Medical Center (UPMC), Detection
of Early Lung Cancer Among Military Personnel (DECAMP),
and University of Colorado Denver (UCD). We derived 10
named cohorts from these sites using different inclusion criteria
(Table 1). We obtained CT scans, demographics, and question-
naire data from the CT arm of the NLST upon request with
a data use agreement (https://edas.cancer.gov/learn/nist/images/).
Data from the Vanderbilt Lung Screening Program (VLSP) co-
hort were acquired under our home institutional review board
supervision (no. 181279). Data from the Longitudinal Inci-
dental VUMC (LI-VUMC) and BRONCH (biopsied nodules)
cohorts were acquired under institutional review board supervi-
sion (no. 140274). Data from the VUMC cohort were acquired
under institutional review board supervision (no. 030763 and
000616). Data from the UPMC, UCD, and DECAMP co-
horts were acquired via academic collaborations under different
grants. Acquisition of data from these cohorts was compliant
with the Health Insurance Portability and Accountability Act.
Regarding patients who have been previously reported, the
NLST is a widely studied public dataset. Portions of the VLSP
cohort have been reported in Li et al (22) (7 = 1189) and Gao
et al (20) (n = 147), and the LI-VUMC cohort was previously
reported in Li et al (23) and Li et al (24). Patients from VUMC,
PUMC, UCD, and DECAMP have been previously studied in
Gao et al (19) (z = 1331) and Kammer et al (25) (z = 457).

Image Preprocessing

We used a documented pipeline (26) that includes algorithmic
analysis and manual visual assessment to ensure every scan used in
this study passed certain image quality standards (Fig 1). Specifi-
cally, we excluded scans with severe imaging artifacts, scans with a
section thickness greater than or equal to 5 mm, and scans without
the full lung field in the field of view. A total of 713 studies were
excluded because of insufficient quality (Fig S1). Patient health
information was removed using the MIRC Anonymizer (27).

Predictive Models

We selected an array of models for lung cancer prediction (Ta-
ble 2), including models designed to estimate lung cancer risk
(ie, Sybil) as well as models designed to predict the malignancy
probability of a pulmonary nodule. We included the Brock (9)
and Mayo (8) models because they are among the most cited, val-
idated, and used in clinical practice. We studied several Al models
incorporating a range of approaches that would allow us to exam-
ine the efficacy of three strategies: Liao et al (14) and Sybil (15) as
single-time-point chest CT approaches, Distanced Long Short-
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Table 1: Cohort Inclusion and Exclusion Criteria

Cohort

Inclusion and Exclusion Criteria

NLST-test

NLST-test-nodule

NLST-dev

VLSP

LI-VUMC

MCL-VUMC

MCL-UPMC

MCL-DECAMP

MCL-UCD

BRONCH

Patients correspond to the Ardila et al (18) test set. These patients were not evaluated by any of the predictive
models in this study. Lung cancer events were the biopsy-confirmed lung cancers reported by the NLST. Pa-
tients without a confirmed outcome were excluded from this study.

Subset of the NLST-test cohort in which included patients had at least one positive nodule finding from their CT
examinations as defined in the NLST (>4 mm).

All patients enrolled in the CT arm of the NLST and not part of NLST-test. Those without available imaging or
without a confirmed outcome were excluded.

Patients meeting the American Cancer Society criteria for lung screening and who were enrolled in the lung
screening program at VUMC from 2015 to 2018. Patients receive longitudinal follow-up after a positive screen
and lung cancer events were confirmed via biopsy reports. Nodule characteristics are missing because radiology
reports were not available.

Patients from VUMC who underwent three chest CT examinations within 5 years between 2012 and 2019.
These patients were identified through ICD codes to have a pulmonary nodule and no cancer before the nod-
ule. We defined lung cancer outcomes through ICD codes representing any malignancy found in the bronchus
or lung parenchyma, including metastases from other sites (23). Nodule characteristics are missing because
radiology reports were not available.

Prospectively enrolled patients from VUMC and its associated Veterans Administration facility between 2003 and
2017. Cohorts prefixed with “MCL-" meet the following inclusion criteria. Patients must be aged 18-80 years
and were detected incidentally to have a pulmonary nodule with a diameter between 6 and 30 mm. Patients
consented at initial nodule detection, and serum test and CT scan were acquired at that time. Longitudinal
imaging and biopsy-confirmed diagnosis for malignant nodules were collected during a 2-year period following
initial nodule detection.

Prospectively enrolled patients from UPMC according to consortium inclusion criteria. Longitudinal imaging
after initial nodule detection was not available.

Prospectively enrolled patients from 12 clinical centers associated with the DECAMP (36) study protocol. Of
note, cases and controls are matched on nodule size.

Prospectively enrolled patients from UCD according to MCL inclusion criteria. Longitudinal imaging after initial
nodule detection was not available.

Prospectively collected cohort of patients who underwent a bronchoscopic lung biopsy for a pulmonary nodule
(defined as a lesion <3 cm) at the lung nodule clinic of VUMC between the years of 2017 and 2019. The
subsequent biopsy report from the bronchoscopy was used to determine benign versus malignant status of the
nodule.

Note.—BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of Early Lung
Cancer Among Military Personnel, ICD = International Classification of Diseases, MCL = Consortium for Molecular and Cellular Character-
ization of Screen-Detected Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of
Pittsburgh Medical Center, VUMC = Vanderbilt University Medical Center.

Initial Scan Acquisition (n = number of CT scans)
LI- MCL-
NLST-test VLSP VUMC MCL-VUMC MCL-UPMC DECAMP MCL-UCD BRONCH
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Remove poor image quality due to artifacts, field of view, orientation (Supplementary Fig. 7)
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Remove scans with slice thickness > 5mm
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Flowchart of image quality assurance pipeline for each cohort. Exclusion criteria included severe artifact, nonstandard

chest or body orientation, field of view that did not fully include the lung, and section thickness over 5 mm. BRONCH = cohort of pa-
tients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel,
LI-VUMC = Longitudinal Incidental-VUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected
Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pitsburgh Medical
Center, VLSP = Vanderbilt Lung Screening Program, VUMC = Vanderbilt University Medical Center.
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Table 2: Lung Cancer Predictive Model Characteristics
Year Training Cancer
Model Published Input Distribution ~ Prevalence ~ Outcome Criteria Approach
Mayo (8) 1997 Age, PH, SS, NSpic, Mayo Clinic ~ 23% 2-year LC risk proven  Logistic regression
NUL, NSize* (n=419) via tissue biopsy or no
findings at follow-up
Brock (9) 2013 Age, Sex, FH, Emp, PanCan (= 5.5% 2-year LC risk proven Logistic regression
Nize, Nspic 1871) via tissue biopsy or no
NUL, Ncount, findings at follow-up
Ntype'
Liao et al (14) 2017 Single chest CT NLST-dev 17% 1-year LC risk proven ~ ResNet, nodule detec-
(n = 54306) via tissue biopsy or no  tion, and ROI-based
findings at follow-up prediction
Sybil (15) 2023 Single chest CT NLST-dev (2= 17% Up to 6-year LC risk ResNet, global chest
12672) proven via tissue features, and guided
biopsy or no findings  attention
at follow-up
DLSTM (16) 2020 Longitudinal chest ~ NLST-dev 17% 6-year LC risk proven LSTM network, ROI-
CT (7 = 54306) via tissue biopsy or no  based prediction,
findings at follow-up encodes time interval
between scans
TdViT (17) 2023 Longitudinal chest ~ NLST-dev 17% G-year LC risk proven  Transformer network,
CT (= 54306) via tissue biopsy or no  ROI-based prediction,
findings at follow-up encodes time interval
between scans
DeepLungScreening 2021 Single chest CT, NLST-dev 17% 2-year LC risk proven ~ ResNet, ROI-based
(20) Age, Education,  (n = 5436) via tissue biopsy or no  prediction, late fusion
BMI, PH, FH, findings at follow-up of imaging and clinical
SS, Quit, PYR features
DeepLungIPN (19) 2021 Single chest CT, MCL 59% 2-year LC risk proven DeepLungScreening,
Age, BMI, PH, cross-valida- via tissue biopsy or no  serum biomarker
SS, PYR, Nisize, tion® findings at follow-up
NSpic, NUL, Se- (= 1232)
rum biomarker*
Note.—BMI = body mass index, CYFRA = cytokeratin 19 fragment, DECAMP = Detection of Early Lung Cancer Among Military Per-
sonnel, DLSTM = Distanced LSTM, FH = family history of lung cancer, LC = lung cancer, NLST = National Lung Screening Trial, NSize
= nodule size, NSpic = nodule spiculation present or absent, NUL = nodule in the upper lobes, Ntype = nodule type, Ncount = number of
nodules, PYR = pack-years of smoking, PH = personal history of any cancer, Emp = presence of emphysema, Quit = years since the person
quit smoking, ROI = region of interest, SD = smoking duration, SI = smoking intensity (average number of cigarettes smoked a day), SS =
smoking status (former vs current smoker), TdViT = Time-distance Vision Transformer.
* Largest nodule diameter (mm).
" Categorized as nonsolid or with ground-glass opacity, part-solid, and solid.
¥ Serum concentration of hs-CYFRA 21-1 (natural log of ng/mL) (37).
S Combination of MCL-VUMC, MCL-DECAMP, MCL-UCD.

Term Memory (16) and Time-distance Vision Transformer (17)
as a longitudinal chest CT approaches, and DeepLungScreening
(20) and DeepLungIPN (19) as models with multimodal inputs.

We split patients with confirmed follow-up in the NLST
into development (NLST-dev) and test (NLST-test) sets.
NLST-test contains the patients in the Ardila et al (18) test
set who had confirmed follow-up, and these scans remained
unseen until evaluation. NLST-dev was used to retrain, from
random weights, several of the models using a standardized
2-year lung cancer outcome. The purpose of retraining was
to ensure that the models were not trained on NLST-test and
to standardize the predicted outcome across each model. Spe-
cifically, the years between initial observation of the patient
and the outcome, or year-to-outcome, was not standardized
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across the evaluated models (Table 2). Models developed us-
ing a shorter year-to-outcome have an easier task than models
developed using a longer year-to-outcome. In this way, differ-
ences in year-to-outcomes can confound model comparisons.
For longitudinal imaging models, the outcome was whether
the patient was diagnosed with lung cancer within 2 years of
the patient’s latest scan. The logistic regression models were
not retrained and were evaluated as published because they
were already blinded to NLST-test and we did not have their
original development dataset, which is needed to control for
year-to-outcome. Sybil was also evaluated as published be-
cause the model was already blinded to NLST-test and its pre-
diction includes a 2-year outcome. Last, DeepLungIPN was
originally trained using a cross-validation of MCL-VUMC,
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Table 3: Cohort Characteristics

NLST-test-
Cohort NLST-dev  NLST-test nodule VLSP LI-VUMC VUMC UPMC  DECAMP UCD BRONCH
Program type  Screening Screening Screening Screening  Screening, Incidental Incidental Incidental Incidental Bronchos-
inciden- copy
tal
Institution MCL MCL MCL VUMC VUMC VUMC, UPMC MCL UCD VUMC
VA
VUMC
Program period 2002— 2002— 2002— 2015- 2012— 2003— 2006— 2013— 2010- 2017-2019
2009 2009 2009 2018 2021 2017 2015 2017 2018
No. of patients 5436 898 896 882 219 364 117 131 115 373
No. of patients 901 (17) 149 (17) 147 (16) 24 (3.0) 37 (17) 238 (65) 48 (41) 64 (49) 57 (50) 230 (62)
with lung
cancer
No. of scans 14748 2523 2440 1483 515 760 117 241 115 387
No. of scans 1866 (13) 313 (12) 298(12) 51(3.4) 50(10)  517(68) 48 (41) 100 (41) 57 (50) 240 (62)
with lung

cancer

Section thickness 2.1 £ 0.65 2.1 +0.42 2.1+0.42 0.81 0.77 + 1.8+1.1 22+0.69 1.7+091 1.4+0.79 0.9+0.38

(mm) 0.21 0.61
Age (y) 62+52 62+52 62+52 65+58 59+13 69+11 68+85 68+79 66+83 064+12
Sex (male) 3270 (60) 546 (61) 546 (61) 483 (55) 109 (50) 165 (45) 49 (42) 30 (23) 31 (27) 168 (45)
BMI 28+4.8 28+49 28+5.0 284+6.0 27+74 28+65 28+49 2654 29+62 28+6.8
Personal cancer 256 (4.7) 43 (4.8) 43 (4.8) 135 (15) NA 129 35) 3 (2.6) 65 (50) 13 (11) 194 (52)
history
Family lung can- 1194 (22) 179 (20) 177 (20) 149 (17) NA 41 (11) 0 0 10 (8.7) 88 (24)

cer history
Smoking status

Never 0 0 0 0 NA 33 (9) 0 11(8.4) 22(19) 90 (24)
Former 2781 (51) 469 (52) 468 (52) 357 (40) NA 195 (54) 76 (65) 67 (51) 54 (47) 214 (57)
Current 2655 (49) 429 (48) 428 (48) 525(60) NA 121 (33) 41 (35) 53 (40) 39 (34) 69 (18)

Smoking pack- 56 + 25 59 + 28 59+28  48+21 NA 47 £33 48123 50 + 25 50+33 29+30
years

Nodule size 80+62 79+59 79+59 NA NA 19+13 16£89 1570 18+15 22+1.3
(mm)

Nodule count  1.2+1.3 1312 13+12 NA NA 1.0£00 1.0+0.0 1.0+0.0 1.0:+0.0 1.0+0.0

Nodule attenu-
ation

Solid 7494 (51) 1351 (54) 1351 (55) NA NA 725 (95) 99 (85) 241 (100) 115 (100) 325 (84)
Part-solid 507 (3.4) 69 (2.7) 69 (2.8) NA NA 21 (2.8) 18 (15) 0 0 51 (13)
Nonsolid or 1439 (10) 241 (9.6) 241 (9.9) NA NA 14 (1.8) 0 0 0 11 (2.8)
GGO

Nodule spicula- 997 (6.7) 200 (7.9) 200 (8.2) NA NA 229 (30) 15 (13) 126 (52) 30 (26) 173 (45)

tion (present)

Nodule location
Upper lobe 5554 (38) 996 (39) 996 (41) NA NA 447 (59) 63 (54) 143 (59) 71(62) 203 (52)
Lower lobe 4391 (30) 777 31) 777 (32) NA NA 313 (41) 54 (46) 98 (41) 44 (38) 184 (48)

Note.—Data values are presented as means + SDs or numbers of patients with percentages in parentheses. BMI = body mass index (calculat-
ed by dividing weight in kilograms by height in meters squared), BRONCH = cohort of patients who underwent bronchoscopic lung biopsy
at VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel, GGO = ground-glass opacity, LI-VUMC = Longitu-
dinal Incidental-VUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not available,
NLST = National Lung Screening Trial, NLST-dev = NLST development set, NLST-test = NLST test set, NLST-test-nodule = subset of
NLST-test of patients with at least one positive nodule finding, UCD = University of Colorado Denver, UPMC = University of Pittsburgh
Medical Center, VLSP = Vanderbilt Lung Screening Program, VUMC = Vanderbilt University Medical Center, VA = Veterans Affairs.

MCL-DECAMP, and MCL-UCD. This model was evaluated Implementation and training of models followed their orig-
as published because it includes a blood biomarker that was  inal methodology unless otherwise specified. Details about the
only collected in the MCL cohorts. development site and training distribution are reported in Table
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Table 4: Model Classification of n-year Lung Cancer Risk across Selected Cohorts
NLST-test- MCL- MCL-UP- MCL- MCL-
NLST-test nodules VLSP LI-VUMCVUMC MC DECAMP UCD BRONCH Average
Classification (n=898) (=896) (n=882) (n=219) (n=364) (n=117) (n=131) (2=115) (n=373) Rank
Input Model
Clinical Mayo NA* 0.804 NA* NA* 0.706 0.864 0.568 0.716 0.621 3.5 (7-1)
variables [0.798, [0.704, [0.862, [0.565, [0.712, [0.615, n=06
0.809] 0.708] 0.867] 0.571] 0.719] 0.628]
Clinical Brock  NA* 0.789 NA* NA* 0.716 0.885 0.662 0.713 0.497 3.2 (5-2)
variables [0.782, [0.714, [0.883, [0.659, [0.710, [0.494, n==06
0.796] 0.718] 0.886] 0.6606] 0.716] 0.499]
Single CT Liaoet 0.751 0.755 0.723 0.644 0.662 0.779 0.706 0.660 0.621 3.9 (6-1)
Al al [0.747, [0.750,  [0.712, [0.635, [0.660, [0.776, [0.703, [0.656, [0.614, #n=9
0.756] 0.759] 0.734] 0.653] 0.664] 0.782] 0.709] 0.663] 0.628]
Single CT Sybil 0.881 0.879 0.779 0.763 0.700 0.889 0.606 0.764 0.623 2.6 (6-1)
Al [0.877, [0.872, [0.768, [0.756, [0.694, [0.884, [0.597, [0.756, [0.618, #=9
0.885]" 0.885]"  0.789] 0.770] 0.706] 0.895] 0.616] 0.772] 0.629]
Longitudi- DLSTM 0.738 0.727 NA* 0.711 0.743 NAS 0.778 NAS NAS 3.6 (6-2)
nal CT [0.734, [0.721, [0.702, [0.741, [0.774, n=>5
Al 0.743] 0.731] 0.720] 0.745] 0.781]
Longitudi- TDViIT 0.797 0.790 NA? 0.773 0.753 NAS 0.823 NAS NAS 1.8 (3-1)
nal CT [0.793, [0.785, [0.764, [0.750, [0.820, n=>5
Al 0.802] 0.794] 0.781]"  0.755] 0.825]"
Multimod- DLS  0.783 0.776 0.810 NAl NAl NAl NAl NAl NAl 2.7 (4-1)
al [0.778, [0.771,  [0.799, n=3
0.788] 0.782] 0.820]
Multimod- DLI NAl NAl NAl NAl 0.856 0.936 0.742 0.851 NAT 1.5 (3-1)
al [0.854, [0.935, [0.739, [0.849, n=4
0.858]"  0.938]" 0.745] 0.854]"

Screening Program, VUMC = Vanderbilt University Medical Center.

$ No longitudinal imaging.
[ Missing demographic, smoking history, COPD, or CYFRA covariates.

Note.—Except where indicated, data are bootstrapped mean areas under the receiver operating characteristic curve, with 95% Cls in
brackets. The data in Average Rank are average, range, and the number of cohort evaluations performed. The 7-year lung cancer risk for
each cohort was 2-year risk for each cohort except LI-VUMC, which was 3-year risk, and BRONCH, which was 1-year risk. Al = artificial
intelligence, BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, COPD = chronic obstructive pulmo-
nary disease, CYFRA = cytokeratin 19 fragment, DLI = DeepLungIPN, DLS = DeepLungScreening, DECAMP = Detection of Early Lung
Cancer Among Military Personnel, DLSTM = Distanced LSTM, LI-VUMC = Longitudinal Incidental-VUMC, MCL = Consortium for
Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not available, NLST = National Lung Screening Trial, NLST-
test = NLST test set, NLST-test-nodule = subset of NLST-test of patients with at least one positive nodule finding, TdViT = Time-distance
Vision Transformer, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung

* Nodule characteristics unavailable (missing >10% of nodule size, attenuation, count, spiculation, or lobe location).
T Result was significantly different compared with each other method in the column for P < .01.
# Prohibitive class imbalance (only six of 23 patients with lung cancer have more than one scan).

S1. Apart from removing scans that did not meet our image qual-
ity standards, we did not add or remove any pre- or postprocess-
ing steps included in the models’ pipeline. The code supporting
model training, evaluation, and statistical analysis is available at
hitps:/Igithub.com/MASILabllcancer_baselines. Code supporting
this project is made available at hrzps://github.com/MASILab/

leancer_baselines.

Evaluation and Statistical Analysis

Evaluation included all the named cohorts except NLST-dev.
A model-cohort evaluation was not feasible when a substan-
tial portion of the input data was missing, specifically when
an input variable was missing in more than 10% of cohort
patients (Table S2). When an input variable was missing in
less than 10% of patients, we conducted an evaluation us-
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ing imputation based on a multivariable regression of the
other available variables. The effect of imputation on model
performance is shown in Table S3. We did not evaluate
longitudinal imaging models (Distanced Long Short-Term
Memory and Time-distance Vision Transformer) on cohorts
in which longitudinal imaging was unavailable. When eval-
uating DeepLungIPN on the consortium cohorts, we report
the out-of-fold cross-validation results.

We used AUC to measure model performance for classifying
lung cancer cases and benign controls. For each model-cohort
evaluation, we used a bootstrapping procedure to estimate the
model’s performance on the cohort’s true population. The proce-
dure drew 1000 samples of the same size with replacement from
the original cohort. Each model’s AUC was calculated for each
sample, and we reported the mean AUC and 95% CI over all
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Figure 2: (A) Mean area under the receiver operating characteristic curve (AUC) for all lung cancer prediction models applied on all study cohorts. Almost all methods

demonstrate a high degree of variance in performance across cohorts within most methods, which demonstrates the importance of contextualizing a model’s performance by
comparing it with the performance of baseline models. Darker shading indicates better AUC performance. The 95% Cls are shown on Figure S6. (B) Best- and worst-case
performance for eight predictive models reveals robust performance of longitudinal and multimodal Al methods (ie, Time-distance Vision Transformer [TDViT], Distanced Long
Short-Term Memory [DLSTM], DeeplungScreening [DLS], DeeplungIPN [DLI]) compared with other models. A model’s worst-case performance is defined as its lowest
ranked performance across all cohorts except BRONCH. BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at VUMC, DECAMP = Detection of
Early Lung Cancer Among Military Personnel, LI-VUMC = Longitudinal Incidental-YUMC, MCL = Consortium for Molecular and Cellular Characterization of Screen-De-
tected Lesions, NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung

Screening Program, VUMC = Vanderbilt University Medical Center.

bootstrapped samples. A two-sided Wilcoxon signed rank test
was used to evaluate significance of differences (significant at P
<.05) in mean AUC between models within a single cohort. We
did not test statistical differences across cohorts because patients
were not paired across cohorts.

Model performance for non—small cell lung cancer (NS-
CLC) versus small cell lung cancer (SCLC) cases were compared
in NLST-test nodules and MCL-VUMC. The mean AUC and
95% CI of each model was computed using the same bootstrap
procedure drawn from the pool of patients with benign nodules
and patients with either SCLC or NSCLC. An unpaired 7 test
was used to evaluate whether the discrimination of a model of
malignant versus benign was significantly different (significant at
P <.05) with these two lung cancer subtypes.

An analysis of calibration before and after confidence correction
was conducted. In each model-cohort evaluation, 10-fold cross-val-
idation was used to fit isotonic regressions on the training set of
each fold. Calibration was then evaluated on the validation set of
each fold (Figs S2-S5). All statistical analyses were performed in
Python version 3.8 with support from the SciPy package.

Results

Cohort Characteristics

The size of the evaluation cohorts ranged from 898 patients
(NLST-test) to 115 patients (MCL-UCD). Mean age ranged
from 59 years with an SD of 13 (LI-VUMC) to 69 years with an
SD of 11 (MCL-VUMC). Male sex proportion ranged from as
low as 23% (MCL-DECAMP) to as high as 61% (NLST-test).
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Cancer prevalence in the biopsied nodules cohort (BRONCH:
62%) was the highest, followed by incidentally detected nodules
(MCL-VUMC: 65%, MCL-UPMC: 41%, MCL-DECAMP:
49%, MCL-UCD: 50%), and the screening cohorts (NLST-
test: 17%, VLSP: 3%, LI-VUMC: 17%). Mean smoking pack-
years fell within 47 to 59 years except for the biopsied nodules
cohort, which had a mean pack-year of 29 years due to the high
proportion of never-smokers. Overall cohorts were distributed
differently in terms of cancer prevalence, demographics, smok-
ing background, and nodule characteristics (Table 3).

Model Performance

Table 4 reports the mean AUCs and 95% Cls for each feasible
model-cohort evaluation. Table S4 also reports corresponding
sensitivity and specificity using an optimal cut-point for each
model-cohort evaluation. Comparing the results rowwise re-
veals that almost all predictive models exhibited noticeable dif-
ferences in performance across cohorts (Fig 2A).

The performance gaps were the largest between cohorts from
different sites and different clinical settings (ie, Brock on NLST-
test-nodules: 0.789 [0.782, 0.796] vs Brock on MCL-DE-
CAMP: 0.662 [0.659, 0.66]). The performance gap remained
large between cohorts from different sites but the same clinical
setting (ie, Sybil on NLST-test: 0.881 [0.877, 0.885] vs Sybil
on VLSP: 0.779 [0.768, 0.789]). In contrast, the performance
gap between different cohorts from the same site but differ-
ent clinical setting was generally smaller (ie, Liao et al on LI-
VUMC: 0.644 [0.635, 0.653] vs Liao et al on MCL-VUMC:
0.662 [0.660, 0.664]).
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methods across all study cohorts. Brock and Lico et al are selected as baselines to compare with the method achieving the highest classification performance in the corre-
sponding cohort. The best performing method differs across cohorts. Among baselines and the best performers, bootstrapped AUC distributions demonstrate high variance
across cohorts. DeeplungScreening (DLS) seems to perform the best in the cohorts with incidental nodules (MCL cohorts). Unsurprisingly, Time-distance Vision Transformer
(TDVIT) excels in the Longitudinal Incidental-VUMC imaging cohort (LI-VUMC). The box and line within the box denote the IQR and median, respectively. The whiskers
denote 1.5 times the IQR, and points outside the whiskers denote outliers beyond this range. BRONCH = cohort of patients who underwent bronchoscopic lung biopsy at
VUMC, DECAMP = Detection of Early Lung Cancer Among Military Personnel, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions,
NLST = National Lung Screening Trial, UCD = University of Colorado Denver, UPMC = University of Pittsburgh Medical Center, VLSP = Vanderbilt Lung Screening Program,

VUMC = Vanderbilt University Medical Center.
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Receiver operating characteristic (ROC) curves demonstrate a failure to generalize across four select cohorts. Top performers in lung screening cohorts (A)

are different than the top performers in cohorts with incidentally detected nodules (B), and vice versa. (€) All evaluated models performed poorly on a refrospective cohort of
patients selected to undergo diagnostic bronchoscopic biopsy (BRONCH) for a pulmonary nodule at VUMC. ROC curves for remaining evaluation cohorts are provided in
Figure S7. DLS = DeeplungScreening, DLSTM = Distanced Long Short-Term Memory, MCL = Consorfium for Molecular and Cellular Characterization of Screen-Detected
Lesions, TDVIT = Time-distance Vision Transformer, VUMC = Vanderbilt University Medical Center.

Comparing the relative performances between multiple mod-
els across cohorts highlights the following findings. Single chest
CT AI (Liao et al and Sybil) performed well in lung cancer screen-
ing cohorts (ie, Sybil model on NLST-test: AUC, 0.881 [95% CI:
0.887, 0.885]) (Fig 3A). These models were generally competitive
with linear models while longitudinal and multimodal Al signifi-
cantly outperformed linear models in every cohort. Results for
MCL-UPMC represent this well, with Sybil (AUC, 0.889 [95%
CI: 0.884, 0.895]) performing close to Brock (AUC, 0.885 [95%
CI: 0.883, 0.886]), and DeepLungIPN (AUC, 0.936 [95% CI:
0.935, 0.938]) outstripping the performance of both.

Longitudinal or multimodal Al were top performers across
all cohorts with incidental nodules (Figs 3, 4). They showed
better worst-case performances in comparison to the other ap-
proaches (Fig 2B). Ranking the results within each cohort, we
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define a model’s worst case as its lowest ranked performance
across all cohorts except BRONCH. The worst-case perfor-
mances of Distanced Long Short-Term Memory (on NLST-
test nodules: AUC, 0.727 [95% CI: 0.721, 0.731]), Time-dis-
tance Vision Transformer (on NLST-test nodules: AUC, 0.790
[95% CI: 0.785, 0.794]), DeepLungScreening (on NLST-test
nodules: AUC, 0.776 [95% CI: 0.7771, 0.782]), and Deep-
LungIPN (on MCL-DECAMP: AUC, 0.742 [95% CI: 0.739,
0.745]) were all moderate in terms of absolute AUC. In con-
trast, the worst-case performance of Mayo, Brock, Liao et al,
and Sybil were low in terms of absolute AUC.

Models evaluated on the BRONCH cohort, representing
nodules that are suspicious enough to warrant a biopsy, per-
formed poorly, with mean AUCs ranging from 0.497 to 0.623
(Fig 4).
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Table 5: Model Classification of Lung Cancer Risk by Cancer Subtype

NLST-test Nodules* MCL-VUMC'

Model SCLC (= 18) NSCLC (z=119) SCLC (z = 39) NSCLC (n = 194)
Mayo NA! 0.810 (0.808, 0.812)  0.774 (0.772,0.776)  0.683 (0.681, 0.685)
Brock NA! 0.792 (0.790, 0.794)  0.794 (0.792,0.797)  0.688 (0.687, 0.690)
Liaoetal  0.683 (0.680, 0.687) 0.770 (0.768, 0.771)  0.617 (0.614, 0.620)  0.688 (0.686, 0.690)
Sybil 0.728 (0.723, 0.733)° 0.899 (0.897, 0.900)  0.701 (0.698,0.703)  0.701 (0.699, 0.702)
DLSTM  0.663 (0.658, 0.668) 0.808 (0.806, 0.809)  0.730 (0.726, 0.735)  0.754 (0.751, 0.757)
TDViT 0.707 (0.702, 0.711) 0.771 (0.769,0.773)  0.667 (0.661, 0.673)  0.760 (0.757, 0.763)
DLS 0.659 (0.654, 0.664) 0.792 (0.791, 0.794)  NAl NAl
DLI NAI NAI 0.904 (0.901, 0.907)S  0.853 (0.851, 0.855)$

Note.—Data are bootstrapped mean areas under the receiver operating characteristic curve, with 95% Cls in paren-
theses. DLI = DeepLungIPN, DLS = DeepLungScreening, DLSTM = Distanced LSTM, NSCLC = non—small cell
lung cancer, MCL = Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions, NA = not
available, NLST-test-nodule = subset of National Lung Screening Trial-test of patients with at least one positive nodule

finding, SCLC = small cell lung cancer, TdViT = Time-distance Vision Transformer, VUMC = Vanderbilt University

Li et al

Medical Center.

* n malignant = 147, » benign = 749.
"7 malignant = 238, 7 benign = 126
* Prohibitive class imbalance (7 = 5).

S Result was significantly different compared with every other method in the column for P < .01.
I Model evaluation not performed in these cases because the required covariates were missing (demographics, smoking
history, chronic obstructive pulmonary disease, cytokeratin 19 fragment).

Al models discriminated NSCLC cases from benign findings
better than SCLC cases (Table 5) in the lung screening setting
(AUC for Sybil on NLST-test was 0.899 [95% CI: 0.897, 0.900]
for NSCLC vs 0.728 [95% CI: 0.723, 0.733] for SCLC). In
both lung screening and incidentally detected nodules, longi-
tudinal models demonstrated better performance with NSCLC
cases compared with SCLC cases (AUC for Time-distance Vi-
sion Transformer on MCL-VUMC was 0.760 [95% CI: 0.757,
0.763] for NSCLC vs 0.667 [95% CI: 0.661, 0.673] for SCLC).

Discussion

The most prominent result of our study was perhaps that there
was no clear winner among the models evaluated. The per-
formance of each model varied with site and clinical setting,
which reflects a moderate degree of generalization failure that
is often observed in both open-source and commercial pre-
dictive models across many medical domains (28). Those in-
terested in using predictive models in lung cancer should be
aware that these models, despite previous reports of successful
external validation, most reliably achieve their expected per-
formance when they are used in the same clinical context and
site as they were developed in (29). Those involved in model
deployment should consider fine-tuning models with a cohort
that matches the site, clinical setting, and year-to-outcome in
which the model will be used. Steps should be taken during
model development to mitigate a failure to generalize when
site and setting are unmatched with techniques such as image
harmonization (30), fine-tuning (31), and potentially directly
modeling the site-specific effects (30). These results motivate
further investigation into the site- and context-specific factors
that are driving a variance in performance and how they can
be harmonized.
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This study reveals the importance of interpreting a model’s
performance relative to the performance of other models on
the same cohort. Doing so revealed several findings that were
sustained across cohorts. Single chest CT Al (Liao et al and
Sybil models) performed on par with linear models that in-
cluded nodule variables (Mayo and Brock). As demonstrated
previously (9,10,15), single chest CT Al is well suited for
identifying individuals at risk for lung cancer who can benefit
from starting or having more frequent lung imaging. Longi-
tudinal and multimodal models demonstrated comparatively
favorable performance on incidentally detected nodules. In
contrast to other models, longitudinal and multimodal Al also
appeared to be more robust across cohorts, as seen from their
worst-case performances.

Given that nodules in the BRONCH cohort were inherently
difficult to diagnose, the poor performance on this cohort was
unsurprising. Because of missing data, we were not able to evalu-
ate longitudinal and multimodal AT on BRONCH. A predictive
model that is highly specific for lung cancer in this setting has
the potential to prevent invasive management of benign nodules.
Therefore, evaluation of longitudinal and multimodal Al on a
retrospective cohort of biopsied nodules is a high priority area for
future investigation.

Longitudinal imaging models performed better on NSCLC
than SCLC. One explanation for this is that NSCLC is, on aver-
age, observed more frequently as an indeterminant nodule com-
pared with faster progressing SCLC, which is often an advanced
stage at first observation (32). These results warn that longitudi-
nal imaging models may underperform on SCLC cases.

The regression calibrator improved calibration for most mod-
els evaluated on the NSLT, MCL, and BRONCH cohorts. Cal-

ibration remained poor or became worse for models evaluated
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on highly imbalanced cohorts (VLSP and LI-VUMC), which
align with previous findings (33).

Within the AI approaches, leveraging additional sources
complementary data appears to be an effective strategy for im-
proving classification performance. For instance, Sybil makes use
of the entire chest, whereas Liao et al predicts cancer based on
a few regions of interest, a technique that crops out portions of
the lung field and discards the overall chest anatomy. Addition-
ally, using longitudinal imaging that, when available, leads to
performance gains across most of the cohorts. The integration
of two or more consecutive chest CT studies allows the model
to consider how imaging features change over time. The use of
data from multiple modalities also appears to be effective. From
a clinical perspective, the advantage of a multimodality approach
is expected, because imaging findings are often interpreted in the
context of the patient’s clinical risk factors. The improved perfor-
mance of longitudinal Al and multimodal Al in this study sug-
gest that combining the two approaches is a promising direction.

We note the following limitations of our study. Because the
evaluation cohorts are from 2002 to 2021, we expect different
numerical results on cohorts drawn from current practice but a
similar failure to generalize across clinical context and site. Several
model-cohort evaluations were not conducted because of incom-
plete data. Extreme class imbalance in the model training cohort
is another confounding factor that can affect a model’s sensitivity
and specificity. This is concerning for the Brock model, which
was trained on a cohort with a cancer prevalence much smaller
than those of other models. Other confounding sources include
the differences in cohort size, scanner manufacturers, and scanner
protocols (34,35). Finally, the evaluation of DeepLungIPN on its
training cohort is limited because the results are from cross-vali-
dation. However, it still performed well when evaluated on a true
external cohort (MCL-UPMC).

In summary, this study presents a comparative analysis of
eight lung cancer prediction models against nine cohorts that
represent clinically relevant use cases. Our results revealed a lack
of generalized performance and showed that certain modeling
strategies excelled in lung screening versus incidentally detected
nodules, and all models fell short in a cohort with biopsied nod-
ules. We highlight approaches in lung cancer predictive modeling
that, if investigated further, have the potential to overcome these
observed limitations.
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