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Abstract

The integration of Digital Breast Tomosynthesis (DBT) and Artificial Intelligence (Al) represents a significant advance
in breast cancer screening. This combination aims to address several challenges inherent in traditional screening while
promising an improvement in healthcare delivery across multiple dimensions. For patients, this technological synergy has the
potential to lower the number of unnecessary recalls and associated procedures such as biopsies, thereby reducing patient
anxiety and improving overall experience without compromising diagnostic accuracy. For radiologists, the use of combined
Al and DBT could significantly decrease workload and reduce fatigue by effectively highlighting breast imaging abnormalities,
which is especially beneficial in high-volume clinical settings. Health systems stand to gain from streamlined workflows and
the facilitated deployment of DBT, which is particularly valuable in areas with a scarcity of specialized breast radiologists.
However, despite these potential benefits, substantial challenges remain. Bridging the gap between the development of
complex Al algorithms and implementation into clinical practice requires ongoing research and development. This is essential
to optimize the reliability of these systems and ensure they are accessible to healthcare providers and patients, who are
the ultimate beneficiaries of this technological advancement. This article reviews the benefits of combined AI-DBT imaging,
particularly the ability of Al to enhance the benefits of DBT and reduce its existing limitations.

Résumé

L'intégration de la tomosynthése mammaire numérique (TMN) et de lintelligence artificielle (IA) représente une avancée
considérable pour le dépistage du cancer du sein. Cette combinaison vise a relever plusieurs obstacles inhérents au dépistage
traditionnel tout en promettant une amélioration de la prestation des soins de santé dans de multiples dimensions. D’abord,
cette synergie technologique pourrait permettre de réduire le nombre de rappels inutiles et de procédures associées comme
les biopsies, ce qui réduirait 'anxiété des patientes et améliorerait leur expérience générale sans compromettre la précision du
diagnostic. Ensuite, l'utilisation combinée de I'lA et de la TMN pourrait réduire considérablement la charge de travail et la fatigue
des radiologistes, car elle met en évidence les anomalies de I'imagerie mammaire de fagon efficace, ce qui est particulierement
bénéfique dans les environnements cliniques a fort volume. Les systémes de santé ont tout a gagner de la rationalisation des flux
de travail et de la facilitation du déploiement de la TMN, qui est particuliérement précieuse dans les régions ou les radiologistes
spécialistes du cancer du sein sont rares. Cependant, malgré ces avantages potentiels, il reste des difficultés importantes a
surmonter. Si I'on veut combler le fossé entre la mise au point d’algorithmes d’lA complexes et leur mise en ceuvre dans la
pratique clinique, il faut poursuivre la recherche et le développement. Ces éléments sont essentiels afin d’optimiser la fiabilité de
ces systémes et faire en sorte qU'ils soient accessibles aux prestataires de soins de santé et aux patientes, qui sont les bénéficiaires
ultimes de cette avancée technologique. Le présent article passe en revue les avantages de I'imagerie avec combinaison IA-TMN,
en particulier la capacité de I'lA a renforcer les avantages de la TMN et a réduire ses limites actuelles.
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Introduction

Breast cancer continues to be a major health challenge
worldwide, affecting approximately 2 million women each
year. It is the leading cause of cancer-related deaths in
women despite the widespread implementation of screening
programs.! Mammography, the principal method for breast

cancer screening, is crucial for early detection.? However, it
has limitations; while 2D mammography detects about 87%
of breast cancers,’ it often fails in women with dense breasts,
which can mask cancer signs on mammograms.* This is par-
ticularly problematic given that nearly half of all women
undergoing screening have dense breasts.” Mammograms
not only miss certain cancers but also have a high rate of
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false positives,”> which can lead to unnecessary further test-
ing and anxiety. Moreover, mammograms can identify pre-
cancerous conditions that might never become problematic
yet often result in treatment due to our inability to predict
the risks of non-intervention.®’ This highlights the need for
advancements beyond traditional digital mammography.

Digital Breast Tomosynthesis (DBT), a newer technology,
improves upon traditional methods by obtaining multiple
images from different angles, reducing the issue of tissue over-
lap inherent in 2D mammography.®® DBT has demonstrated
increased cancer detection rates with an incremental cancer
detection rate of 1.2 to 2.7 cases per 1000 screenings with a
variable impact on recall rates.!® Combined with synthetic 2D
imaging, this technique offers slighter greater radiation dose
compared to standard mammography, addressing initially
raised concerns about increased radiation exposure.'!!2

The shift from 2D mammography to DBT in the United
States is evident,'® with a significant increase in facilities
adopting DBT over the past 8years. Despite its advantages,
DBT faces challenges, such as higher costs, greater storage
requirements, and longer times needed for image interpreta-
tion, which may hinder its widespread adoption. '

On the other hand, integrating Artificial Intelligence (AI)
in medical devices, particularly in radiology, is reshaping
diagnostics.'* This article reviews the benefits of combined
AI-DBT imaging particularly the ability of Al to enhance the
benefits of DBT and reduce its existing limitations.

DBT: Enhancing Detection Through Al-
Computer-Aided Diagnosis (AlI-CAD)
Software

The use of computer-aided diagnosis (CAD) tools in mammog-
raphy is not novel, with over 2 decades of clinical application.'s
Originally, CAD served as an adjunct tool, offering a “second
look” to improve detection rates.' Early CAD systems relied on
manually defined image features and basic classifiers, often
inadequate for complex diagnostic tasks and has been demon-
strated to increase false positives.!> In contrast, Al-powered
CAD, specifically deep learning-based AI-CAD, utilizes
advanced multi-layer neural networks that autonomously learn
from large datasets to identify relevant features.'® This advance-
ment has marked a new phase in CAD’s evolution, improving
clinical decision support throughout various stages of patient
care.!” Within the context of DBT, AI-CAD not only holds the
potential to distinguish between normal and abnormal findings
and improve disease detection but also improves workflow effi-
ciency by managing and prioritizing reading tasks.'” Figure 1

¥

Improve disease detection
and characterization

Alleviate the shortage of
skilled radiologists

‘ Reduce the time to read DBT | ‘ Reduce healthcare costs ‘

Figure 1. Key potential benefits of this synergistic technological
advancement.
Note. Al =artificial intelligence; DBT = digital breast tomosynthesis.

outlines the key potential benefits of this synergistic technologi-
cal advancement.

Unpacking How Al Enhances DBT:
Clarifying the Mechanism

Deep learning algorithms in Digital Breast Tomosynthesis
(DBT) scrutinize each image slice for signs of abnormal-
ity, focusing on specific features such as calcifications,
soft tissue masses, asymmetries, distortion, or a combina-
tion of them. The Al system assigns scores to identified
lesions, with the lesion score reflecting the algorithm’s
confidence that a lesion is malignant based on image anal-
ysis.!'® In contrast, the case score evaluates the overall
likelihood that the entire DBT exam reveals a malignant
lesion, offering a broader assessment rather than focusing
on individual lesions.!®

The Al software calculates scores by comparing detected
lesions against a database of biopsy-proven cancerous
lesions.!” In that way, the Al algorithms can identify abnor-
malities and assess the likelihood of malignancy, providing
critical support in clinical decision-making. For example, a
lesion scoring 80% is deemed more suspicious than 80% of
the malignant lesions in the database, signalling a high
concern for potential malignancy. A lower score indicates
less suspicion compared to the database’s malignant
lesions, but it does not rule out the possibility of cancer.
The lesion score primarily aids radiologists by highlight-
ing areas that might require more detailed examination and
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Figure 2. A 49-year-old patient with a history of left malignant lumpectomy was assessed using AI-DBT imaging, which indicated a
high-priority case with up to a 90% lesion score. Given the patient’s history, we could classify the finding as benign. (A, B) Bilateral
craniocaudal and mediolateral oblique mammogram views showed left-sided postoperative changes. (C) Al-DBT imaging on the
craniocaudal showed a 90% lesion score. (D) AlI-DBT imaging on mediolateral oblique view showed an 87% lesion score.

potentially further testing. It’s crucial to recognize that a
100% lesion score does not confirm cancer, as Al cannot
replace tissue sampling. Figures 2 to 4 display examples of
the AI-DBT tool.

Risk scores may be vendor specific depending on the on
the predetermined datasets used to develop the thresholds for
malignancy for image analysis.!” Furthermore, mammogra-
phy systems and patients” demographics may also influence
risk scores.??! Therefore, close liaison with the vendor is
needed for the user to understand and optimize performance
when using different AI-CAD systems.

Moreover, modern AI-CAD systems assist radiologists
by triangulating findings across multiple mammographic
views.?? This capability can significantly streamline the
diagnostic process, making it more efficient by reducing
the time needed for radiologists to match lesions across dif-
ferent images.

Additionally, to simulate clinical practices where radiol-
ogists compare current examinations with prior ones to
identify temporally stable or growth findings, a temporal

DBT lesion-processing module has been proposed. This
module automatically contrasts 2 screening exams to factor
in lesion growth or stability during evaluation, showing sig-
nificant improvement in breast cancer detection perfor-
mance. In external testing, PriorNet demonstrated superior
performance with an AUC of 0.896 (95% CI: 0.885-0.896),
outperforming the baseline models, which achieved AUCs
0f 0.846 (95% CI: 0.846-0.847) and 0.865 (95% CI: 0.865-
0.866), both with P-values <.001.23

Streamlining Workflow With AlI-CAD
in Radiology

In radiology departments, AI-CAD system outputs are being
used as practical filters within radiologists’ worklists to
streamline and prioritize case reviews.?* This integration
allows radiologists to sort cases based on the number of find-
ings, allowing them to choose to address simpler cases with
no findings before moving on to more complex ones with
multiple findings or vice versa.
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Figure 3. A 52-year-old patient with a previous history of left malignant lumpectomy presenting with a biopsy-proven left side
recurrence, highlighted as a high-priority case by the AI-DBT imaging, with up to 93% lesion score. (A, B) Bilateral craniocaudal and
mediolateral oblique mammogram 3years ago showed postoperative changes in the left breast. (C, D) Recently, bilateral craniocaudal
and mediolateral oblique mammogram views demonstrate, at the left surgical site, a development of an equal density irregular mass with
associated internal amorphous calcifications (E) Al-DBT imaging on the craniocaudal showed an 87% lesion score. (F) Al-DBT imaging on
mediolateral oblique view showed a 93% lesion score.

Additionally, technologists can leverage the AI-CAD scores evaluations for patients. This proactive strategy can significantly
after images are captured to prompt radiologists for expedited patient anxiety linked to waiting for recall decisions and enhance
reviews, potentially enabling quicker or even same-day adherence to screening program protocols.?>%
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Figure 4. A 77-year-old patient with a clinical area of concern in the left breast, which biopsy-proven malignancy, depicted as a high-
priority case by the AlI-DBT imaging with up to 90% lesion score. (A, B) Bilateral craniocaudal and mediolateral oblique mammogram
views showed underlying clinical concern in the left outer breast, BB-marked, an equal-density irregular and spiculated mass with
associated fine and pleomorphic calcifications extending beyond the mass. (C) Al-DBT imaging on the craniocaudal showed a 90% lesion
score. (D) Al-DBT imaging on mediolateral oblique view showed an 62% lesion score.

Integrating Al With DBT in Clinical
Practice

Several methods have been proposed to harness Al-driven
CAD to boost DBT effectiveness, as described below and out-
lined in Figure 5.

One approach is to use Al as a second reader. It can
replace one of the radiologists in the double-reading
process, which is common in many European coun-
tries or integrating Al as an auxiliary tool within the
single-view reading framework commonly done in
North America, where it would act as a supplementary
reviewer.

Alternatively, Al could be considered for use as a stand-
alone diagnostic tool, operating independently from
radiologists, a bold step that could transform diagnostic
practices by fully utilizing AI’s analytical capabilities.

e Additionally, Al systems can serve as a triage tool, act-
ing as gatekeepers by separating cases based on find-
ings. This helps prioritize reader workflow, enabling
radiologists to concentrate on cases with a higher prob-
ability of malignancy, thus improving diagnostic accu-
racy. However, unlike when Al is used as a standalone
modality, it does not remove the need for radiologists
to serve as screening readers.

Al as the Second Reader in DBT

Double reading in breast cancer screening involving 2 radi-
ologists has proven to identify more cancers than single-
reader methods.?” Despite its effectiveness, this approach can
increase false-positive recalls and adds significant burdens to
screening processes due to the heightened workload.?” In
addition, its feasibility depends on the availability of skilled
radiologists which are frequently in short supply.
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Figure 5. Strategies for integrating Al with DBT in clinical practice.

The evidence summarized in Table 1A and B from retro-
spective studies,?®3? which compare Al performance against
radiologists of varying experience levels, shows that AI-CAD
systems used as second readers in DBT either meet or surpass
the sensitivity and specificity of traditional double-reading
methods. Regarding recall rates, the single study included in
this review?’ found that adding Al as a supplementary tool in
a single-reading setting was noninferior to radiologists in
recall rates (P<<.01 for a noninferiority margin of 0.05).
However, the study did not include an assessment of the supe-
riority of recall rates observed in the double-reading process
with arbitration,3® as this was not part of the prespecified test-
ing sequence. This limitation prevented the evaluation of AI’s
potential superiority in reducing recall rates. Consequently,
further studies are needed to clearly define the role of Al as a
second reader in reducing recall rates. Nevertheless, the cur-
rent results suggest that Al not only potentially provides the
advantages of double reading but also alleviates the shortage
of radiologists and may have a cost saving impact. However,
a significant question still remains unanswered and warrants
further investigation. This involves determining how the
“radiologist-Al” team will operate in practical settings.
Specifically, how the discrepancies between the radiologist’s
assessments and Al recommendations will be resolved.

Additionally, study results demonstrate that employing Al
as a second reader can significantly improve workflow effi-
ciency. Using Al to instantly highlight the lesions and provide
a lesion score, can reduce the time required to review each
DBT scan by 11% to 52.7%. It can address a major limitation
of DBT, marking a substantial step forward in streamlining
breast cancer screening processes (Table 1C).

Al and DBT as Standalone Screening
Modalities

Employing Al as a standalone modality in breast cancer screen-
ing could offer a cost-effective solution by eliminating com-
pletely the need for radiologists to read the screening studies,
enabling them to concentrate solely on the subsequent workup
with additional images and/or biopsies of findings flagged by the
Al3* This approach could significantly ease the current shortage
of breast imaging specialists. However, standalone Al systems
have not yet received FDA approval, as its present approved use
is in a supportive role in conjunction with radiologists.*’

Furthermore, adopting Al as an independent reader intro-
duces substantial regulatory challenges, particularly regard-
ing the medicolegal implications of Al errors.>* In cases of
misdiagnosis, determining liability is complicated. Questions
arise about whether the responsibility lies with the radiolo-
gist, whose name appears on the report, or the Al system
itself. Since the development of Al involves multiple contrib-
utors, assigning accountability can be problematic.

Despite these challenges, evidence summarized in Table 2A
and B¥23%37 indicates that AI-CAD systems used as stand-
alone modalities in screening are at least as effective, if not
superior, to radiologists in terms of performance. These findings
align with a recent published polled data from 16 studies, which
included 1108328 examinations in 497091 women.*
Additionally, studies suggest that using Al as a standalone
reader in DBT settings at least matches human readers’ capabili-
ties and significantly reduces recall rates. This could potentially
lower patient anxiety, which has shown to be a significant deter-
rent to screening participation and reduce unnecessary follow-
up tests and biopsies, thus cutting healthcare costs.?>
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Table I. Evidence Summary of the Al-DBT Imaging as a Second Reader.

A. Evidence summary of the diagnostic performance metrics—sensitivity, specificity, and area under the curve (AUC)—of Al-DBT imaging as a second reader.

Sensitivity Specificity
Publication DBT cases Number of radiologists
Author (y) Methodology (% of cancers) (years of experience) Results—AUC [95% CI]  Case-level [95% CI] Case-level [95% Cl]
Chae 2019 Retrospective, Al- 100 (70%) 4 (varied years of Non-inferior NA NA
et al® second reader Enriched Data experience) Al increased 0.002
(from 0.776 to 0.778)
Conant 2019 Retrospective, 260 (25%) 24 (1-34y, median 8y) Al Superior Al Superior Non-inferior
etal® Crossover, Al- Enriched data Al increased 0.057 Al increased 0.080 Al increased 0.069
second reader (from 0.797 to 0.852) (from 77% to 85%) (from 62.7% to 69.6%)
[0.028, 0.087] [2.6%, 13.4%] [3.0%, 10.8%]
P=.0l P=.0l noninferiority P=.01
Pinto 2021 Retrospective, 190 14 Al Superior Al Superior Non-inferior
et al®® Crossover, (38.9%) (1-9y of experience) Al increased 0.002 Al increased 0.050 Al increased 0.02
Al-second reader  Enriched Data (from 0.85 to 0.88) (from 81% to 86%) (from 71.6% to 73.3%)
P=.01 P=.006 P=.48
van 2021 Retrospective, 240 (27%) 18 (2-23y of experience) Al Superior Al Superior Non-inferior
Winkel Crossover, Al- Enriched Data Al increased 0.030 Al increased 0.040 Relative difference
et al’! second reader (from 0.83 to 0.86) (from 74.6% to 79.2%) +1.1% [1.3%, 3.5%]
P=.0025 P=.016 P=.380
Shoshan 2022 Retrospective, Al- 205 (40.5%) 5 (I-7y of experience) NA Non-inferior Al Superior
et al®? second reader Enriched data Al increased 0.010 Al increased 0.060

(from 76% to 77%)
noninferiority P=.001

(from 70% to 76%)
P=.001

B. Evidence summary of the recall rate of Al-DBT imaging as a second reader.

Publication DBT cases (% of ~ Number of radiologists
Author (y) Methodology cancers) (years of experience) Recall rate (non-cancer)
Conant 2019 Retrospective, 260 (25%) 24 (1-34y median 8y) Non-inferi
et al? Crossover, Al-  Enriched Data on-interior

second reader

Al decrease 0.072
from 38.0% to 30.9%
Non-inferiority P .01.

C. Evidence summary of the workload performance of Al-DBT imaging as a second reader.

Publication DBT cases (% of ~ Number of radiologists
Author (y) Methodology cancers) (years of experience) Reading time
Chae 2019 Retrospective, 100 (70%) 4 (varied years of AlS .,
et al® Crossover, Al-  Enriched Data experience) Al huperlor 149
second reader f s 3';;"7[? 62/003
Conant 2019 Retrospective, 260 (25%) 24 (1-34y, median 8y) I_r\?n; 2/ L0 6503
29 . uperior
etal Crossover, Al- Enriched Data o
d read Al shorter by 52.7%
second reader from 64.1 to 30.4s
Pinto 2021 Retrospective, 190 (38.9%) 14 (1-9y of experience) POl
et al*® Crossover, Al-  Enriched Data No-difference
second reader Al increased by 3s
van 2021 Retrospective, 240 (27%) 18 (2-23y) From 45 to 48
Winkel Crossover, Al-  Enriched Data p=235
et al’! second reader Al Superior

Al shorter by 11%
From 41 to 36s
P<.001

Al as a Gatekeeper in DBT Screening

The use of AI-CAD as a gatekeeper in breast cancer screen-
ing is primarily based on the low incidence of breast can-
cer within the screening population, which can contribute
to reduced radiologists’ accuracy.’® An Al system, if finely
tuned for higher sensitivity, could effectively filter out a
large number of DBT exams that are likely to be normal.
This would lessen the screening burden on radiologists,
allowing them to focus on cases with a higher likelihood of

cancer, thereby improving the radiologist’s diagnostic per-
formance. In this scenario, Al serves as a triage tool that
prioritizes cases for reading based on the findings.
However, unlike when Al is used as a standalone modality,
it does not remove the need for radiologists to serve as
screening readers.

Raya-Povedano et al*’ reviewed 15987 DM and DBT
examinations (which included 98 screening-detected and 15
interval cancers) and demonstrated that, regardless of
whether double or single reading protocols were used,



Freitas et al.

309

Table 2. Evidence Summary of Al-DBT Imaging as a Standalone Modality.

A. Evidence summary of the diagnostic performance metrics—sensitivity, specificity, and area under the curve—of Al-DBT imaging as a standalone

modality.
Sensitivity Specificity
Number of
Publication DBT cases radiologists (years Results—AUC  Case-level Case-level
Author (y) Methodology (% of cancers) of experience) [95% ClI] [95% CI] [95% ClI]
Rodriguez- 2019 Retrospective 2652 (24.6%) 101 (1-44y) Al Non-Inferior NA NA
Ruiz et al* Al Standalone vs Enriched data Al increased 0.026
average single reader from 0.814 to
0.840
[0.003, 0.055]
Pinto et al*® 2021 Retrospective, Al 190 (38.9%) 14 (1-9y) Al Superior NA NA
Standalone vs Enriched data Al increased 0.05
averaged single from 0.90 to 0.85
reader P=.03
Conant et al?”’ 2019 Retrospective, Al 260 (25%) 24 (1-34y, median NA 91% [81%, 96%] 41% [34%, 48%]
Standalone Enriched data 8y)
van Winkel 2021 Retrospective, Al 240 (27%) 18 (2-23y) Al Non-inferior NA NA
et al’! standalone vs Enriched data Al higher +0.007
averaged single [0.048, 0.062]
reader P=.8115
Shoshan et al*2 2022 Retrospective, 205 (40.5%) 5(1-7y) Al Non-inferior NA NA
Al-standalone vs Enriched data Al increased 0.03
averaged single from 0.81 to 0.84
reader noninferiority,
P=.002
Romero- 2022 Retrospective 15999 (0.7%) 4 (3-15y) 0.94 [0.91, 0.97] Non-inferior NA
Martin et al*’ Al standalone vs Al increased 0.035
average single reader from 77% to 80.5%
P=.648
Romero- 2022 Retrospective 15999 (0.7%) 4 (3-15y) 0.94[0.91, 0.97] Non-inferior NA

Martin et al*’

Al standalone vs
average double
reader

Al increased 0.036
81.4% to 85%
P=.481

B. Evidence summary of the recall rate of Al-DBT imaging as a standalone modality.

Number of
radiologists
Publication DBT cases (% of (years of
Author (y) Methodology cancers) experience) Recall rate (non-cancer)
Romero- 2022 Retrospective 15999 (0.7%) 4 (3-15y) Al Superior
Martin et al*’ Al standalone vs Al higher 0.062
Average single From 3% to 9.2%
reader P<.00I
Romero- 2022 Retrospective 15999 (0.7%) 4 (3-15y) Al Superior
Martin et al’’ Al standalone vs Al higher 0.123
Average double From 4.4% to 16.7%
reader P<.001

streamline the screening process effectively while main-
taining or even enhancing diagnostic accuracy.

implementing Al to filter out normal DBT screens could sig-
nificantly reduce the radiologists’ workload by approxi-
mately 70%. This adjustment also led to a lower recall rate
in the double reading scenario without compromising the
sensitivity of the screenings.

Additionally, comparing DM and DBT across 31000
screening cases using a double reading approach,*’ using
Al as a gatekeeper reduced the reading time by about 30%,
improved sensitivity by 25%, and decreased the recall rate
by 27%. This evidence underscores the potential of Al to

Expanded Applications of AI-CAD in
DBT

AI-CAD on Synthetic Images

Al technology also uses CAD-based methods to map areas of
suspicion identified in DBT slices onto a two-dimensional
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synthetic digital mammography (SDM) image, marking
potential abnormalities.*! This approach has demonstrated
improved sensitivity while maintaining specificity compara-
ble to traditional methods.*** Additionally, it has been
shown to decrease the workload for radiologists by reducing
reading times by between 23.5% and 29.2% without impact-
ing recall rates.***

Al Simplifying DBT Slice Review

Al has further been applied to reduce the number of DBT
slices that radiologists need to review. This is achieved by
generating fewer, thicker slices, approximately 6 mm each,
instead of 1 mm each, intended to shorten interpretation time.
A study conducted by Sauer et al** evaluated this strategy
using an enriched dataset comprising 111 DBT scans, includ-
ing 70 cancer cases and reviewed by 3 radiologists with vary-
ing levels of experience. The results confirmed that diagnostic
accuracy remained consistent, and the goal of reducing read-
ing time was effectively achieved.

Challenges in Integrating Al and DBT into Clinical
Practice

Incorporating Al with DBT into clinical settings presents sev-
eral challenges that hinder its rapid adoption and impact
patients’ trust in physicians and healthcare institutions. These
challenges include:

1. Limited Generalizability of Studies: Images from
DBT vary based on the manufacturer, showing dif-
ferences in angular range, acquisition methods,
pixel binning, and the reconstruction techniques
used.® There is a scarcity of validated multicentric
studies that involve medical devices with varying
pixel parameters®® and encompass diverse socio-
demographic groups, including different ages and
ethnicities.*® This lack of broad representation
affects the generalizability and transferability of
results.

2. Transparency and Traceability Issues: Al systems
often lack clear traceability, particularly within the
neural network’s hidden layers, known as the “black
box” problem.*”! This limits the research’s reproduc-
ibility and hampers clinicians’ and patients’ accep-
tance of Al algorithms.

3. Evidence of Clinical Benefit: There is an absence of
evidence showing that Al integration leads to improved
outcomes, such as reduced breast cancer mortality.*’
Studies often focus only on diagnostic performance
metrics, which can introduce lead-time bias with early
detection but might not necessarily translate into
improved survival rates.

4. Reimbursement: As Al systems increasingly per-
form functions traditionally done by physicians,
addressing reimbursement issues becomes vital.

These systems can significantly alter cost structures
and job roles within healthcare, necessitating a com-
prehensive evaluation of reimbursement strategies.
Policymakers and healthcare leaders must engage in
extensive screening program-level discussions to
adapt effectively. This ensures that reimbursement
policies are equitable and align with the broader
goals of healthcare systems, facilitating a smooth
integration of Al technologies while maintaining the
quality of care.>

Additionally, specific technical challenges arise in the devel-
opment of Al algorithms for DBT compared to digital mam-
mography (DM)'°:

a. Computational Demands: Developing an Al algo-
rithm for DBT requires significantly more computa-
tional power.

b. Complex Annotation Tasks: Annotations for DBT
must be made across multiple slices, unlike DM
which typically involves 1 or 2 images. This task is
further complicated by the generally lower resolu-
tion of tomosynthesis sections compared to DM
images.

c. Limited Training Data: There is a scarcity of de-iden-
tified public DBT datasets available for Al training,
which is much smaller compared to those available
for DM. This limitation restricts the development of
robust Al algorithms.

While these challenges are significant, ongoing research
and studies have begun addressing them. However, a major
issue remains with the critical appraisal of available evi-
dence and its integration into clinical practice. This chal-
lenge is largely driven by the “laboratory effect,” where
outcomes from studies using “enriched data”—datasets
disproportionately weighted with malignant cases—may
not accurately reflect real screening scenarios. Such data
can skew the performance metrics of Al tools and radiolo-
gists, often showing higher recall rates in study settings
compared to real-world clinical environments.

Future Directions of Al and DBT in
Breast Cancer Detection

The future of breast cancer detection is intricately linked to con-
tinuous innovations in Digital Breast Tomosynthesis (DBT) and
Artificial Intelligence (Al) technologies. For the findings from
existing studies to be deemed reliable and applicable on a
broader scale, there is a crucial need for validation within actual
population-based screening scenarios. This will involve con-
ducting prospective, multicentric research that includes a vari-
ety of equipment providers to ensure the universal applicability
of the results. Additionally, it is vital to incorporate consider-
ations of ethnoracial diversity to promote equal access to these
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advanced technologies, facilitating their widespread adoption
across varied patient demographics.>! Moreover, it is imperative
to assess the impact of these technological advancements not
just on detection metrics but also on patient survival outcomes
and their cost-effectiveness. Understanding these aspects will
provide a more comprehensive view of their practical value in
healthcare settings, helping to shape future strategies for breast
cancer screening.

Conclusion

The implementation of advanced models combining DBT and Al
in breast cancer screening holds the potential to positively impact
several levels of healthcare delivery. For radiologists, this integra-
tion could significantly reduce workload and fatigue, which are
common in routine clinical tasks. Health systems could see
improved workflows and easier adoption of DBT, particularly in
regions experiencing shortages of breast radiologists. For women
undergoing screening, this technology could minimize unneces-
sary recalls and reduce anxiety and the need for follow-up proce-
dures and biopsies without compromising diagnostic accuracy.
However, bridging the gap between the complex realm of Al
algorithms and their practical clinical applications demands fur-
ther research. This is crucial to ensure that breast cancer screening
effectively benefits from these technological advancements.
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