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AI Agent and Foundational Models

Recent advances in artificial intelligence (AI) have been 
driven by the development of foundational models (FMs) [1]. 
Large language models (LLMs) are FMs pretrained on a large 
corpus of text data followed by fine-tuning specifically 
for instruct-tuned models, with remarkable capabilities to 
‘understand’ and generate natural language conversations 
[2]. Extending beyond text alone, large vision-language 
models (LVLMs) integrate visual understanding with 
linguistic skills, enabling the simultaneous processing of 
both textual and imaging data [3]. Further leveraging the 
advanced reasoning capabilities of recent-generation LLMs, 
newly developed technologies have led to the emergence 
of agentic AI systems, which differ from their predecessors 
by possessing ‘agency’: the ability to ‘observe’ their 
environment, ‘plan,’ and ‘act’ autonomously [4]. Relevant 
terms are summarized in Table 1.

AI agents leverage FMs as their cognitive core—or 
“brain”—to communicate, reason, and make decisions. A 
crucial distinguishing feature of agentic AI is its capability 
to engage in a plan-action-observation cycle. In this 
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iterative cycle, the AI internally ‘reasons’ (plan), executes 
tasks using available tools (action), and evaluates outcomes 
(observation), continuously refining its decisions based on 
environmental feedback to reach a certain predefined goal. 
This iterative cycle empowers agentic AI to autonomously 
handle complex multistep tasks, including diverse radiology 
workflows.

AI agents differ from stand-alone FMs in three primary 
components: agent-specific task system prompts, tool 
utilization, and iterative interactions. 

AI agents can be primed with specific prompts that 
substantially and consistently modify the behavior of the 
underlying FM, making them versatile and adaptable to 
specialized tasks [5]. A significant strength of AI agents 
lies in their ability to employ various tools, including 
a code interpreter (to execute internally generated or 
external code snippets), databases, and application 
programming interfaces (APIs) [6]. This capability enables 
them to perform tasks autonomously, without continuous 
human intervention. By leveraging these tools, agentic 
AI can dynamically interact with its environment (which 
may consist of more agents, human users, or APIs) and 
undertake tasks that exceed the capabilities of standalone 
FMs. Furthermore, AI agents can observe the results of 
their actions and improve their next set of actions. While 
a simple LLM cannot retrieve the clinical data necessary to 
interpret imaging findings accurately, an AI agent can first 
identify the clinical information required for a diagnosis 
(plan), directly access this information through APIs or 
a retrieval pipeline (tools), gather the relevant clinical 
details (action), and finally assess whether the collected 
data are sufficient (observation) for a confident diagnosis. 
This iterative cycle may be repeated multiple times until 
all pertinent clinical information is acquired, substantially 
enhancing the LLM’s capabilities and closely mirroring a 
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real-world radiology workflow.

Applications in Radiology

Agentic AI extends beyond individual tasks, enabling 
complex, interconnected workflows through multi-agent 
systems. In these systems, specialized AI agents collaborate 
under the guidance of a central orchestrator. This multi-
agent architecture facilitates distinct roles for each agent 
while maintaining centralized oversight [7]. One notable 
application of multi-agent systems is clinical decision-
making. Researchers have proposed “virtual hospital” and 
“virtual tumor board,” where distinct AI agents analyze 
MRI scans, pathology slides, and genomic data, collectively 
reaching a diagnostic and management consensus [8,9]. 
Beyond clinical applications, these systems have also shown 
promise in research settings, enabling virtual teams of AI-
driven scientists to collaborate on scientific discovery [10]. 
They can also automate the development of AI algorithms 
for medical imaging by taking free-text descriptions of the 
task and dataset at hand [11]. Additionally, Agentic AI can 
assist in managing longitudinal patient data, leveraging 
clinical and imaging trajectories to navigate personalized 
medicine [12].

The potential combinations of various tools and prompts 
within a multi-agent system are limitless, enabling 
customized designs tailored to specific radiology tasks. 
For example, consider a trauma patient presenting with a 
suspected cervical spine injury. An agentic AI system can 
autonomously select an appropriate imaging protocol based 
on the patient’s history and clinical records (Agent-1), 
triage the imaging request based on urgency (Agent-2), 
enhance image quality through denoising techniques 
(Agent-3), detect critical findings, such as a cervical spine 
fracture involving the C1 lateral mass (Agent-4), and 
subsequently trigger a CT angiogram in response to the 
potential for vertebral artery dissection (Agent-5). The 
report generation tool could be leveraged to draft an initial 
diagnostic report (Agent-6), notify the radiologist to accept 
or reject the critical findings (Agent-7), and, if required, 
communicate preliminary findings to the primary team 
(Agent-8), all under the coordination of an orchestrator 
agent (Agent-9) (Fig. 1).

Future Trends and Considerations

As FMs continue to evolve with expanded context 
windows, we can expect exponential improvements in the 

Fig. 1. Examples of agentic AI in radiology workflow. A: Schematic representation of a basic multi-agent AI system within a radiology 
workflow. B: Illustration of a single AI agent. AI = artificial intelligence

A B
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performance of agentic AI systems in radiology. Additionally, 
it is predicted that the collaborative work of multiple 
specialized AI agents, particularly multiple agents with the 
same expertise, will significantly boost overall performance 
through the cumulative effects achieved over iterative 
feedback rounds, mirroring historical human advancements 
through communication [13]. Future AI agents in radiology 
are expected to demonstrate self-evolving intelligence, 
autonomously optimizing themselves, as early evidence 
of these capabilities is emerging [14-16]. For example, AI 
might automatically find its own workflow bottlenecks, 
enhance its instructions, test them, and eventually deploy 
them with minimal human intervention.

However, such increasing autonomy introduces critical 
ethical and regulatory challenges, necessitating new 
frameworks for continuous validation, robust oversight 
mechanisms, regular audits, fail-safe modes, and human-in-
the-loop checkpoints to maintain patient safety and clinical 
reliability [17,18]. Crucially, these systems require guardrails 
with uncertainty-aware agents to build safe and trustworthy 
systems [19]. Additionally, sustainability and environmental 
concerns related to the computational costs and pollution 
associated with training and large-scale deployment of FMs 
must be thoughtfully considered [20].

CONCLUSIONS

Agentic AI represents a paradigm shift in the application 
of AI in radiology by integrating FMs to create autonomous 
systems capable of observation, planning, and action 
in clinical environments. These intelligent agents 
may potentially automate radiology workflows, reduce 
physician burnout and help maintain diagnostic accuracy. 
Rather than replacing radiologists, agentic AI fosters 
a complementary relationship, allowing clinicians to 
transition toward supervisory roles that involve overseeing 
AI output, interpreting complex cases, and enhancing 
patient interaction. By handling routine and mundane 
tasks, agentic AI could enable radiologists to focus on 
nuanced clinical decisions, driving radiology toward a 
more efficient, accurate, and patient-centered practice. 
However, successful implementation requires addressing 
critical challenges such as ethical considerations, regulatory 
oversight, and environmental sustainability to fully realize 
the transformative potential of this technology.
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