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Abstract

Purpose This study aimed to develop a large multimodality model (LMM) that can detect breast and esophageal carcinomas
on chest contrast-enhanced CT.

Materials and methods In this retrospective study, CT images of 401 (age, 62.9+12.9 years; 169 males), 51 (age,
65.5+ 11.6 years; 23 males), and 120 (age, 64.6 + 14.2 years; 60 males) patients were used in the training, validation, and
test phases. The numbers of CT images with breast carcinoma, esophageal carcinoma, and no lesion were 927, 2180, and
2087; 80, 233, and 270; and 184, 246, and 6919 for the training, validation, and test datasets, respectively. The LMM was
fine-tuned using CT images as input and text data (“suspicious of breast carcinoma’/ “suspicious of esophageal carcinoma”/
“no lesion”) as reference data on a desktop computer equipped with a single graphic processing unit. Because of the random
nature of the training process, supervised learning was performed 10 times. The performance of the best performing model
on the validation dataset was further tested using the time-independent test dataset. The detection performance was evaluated
by calculating the area under the receiver operating characteristic curve (AUC).

Results The sensitivities of the fine-tuned LMM for detecting breast and esophageal carcinomas in the test dataset were 0.929
and 0.951, respectively. The diagnostic performance of the fine-tuned LMM for detecting breast and esophageal carcinomas
was high, with AUCs of 0.890 (95%CI 0.871-0.909) and 0.880 (95%CI 0.865-0.894), respectively.

Conclusions The fine-tuned LMM could detect both breast and esophageal carcinomas on chest contrast-enhanced CT with
high diagnostic performance.

Secondary abstract Usefulness of large multimodality models in chest cancer imaging has not been assessed so far. The
fine-tuned large multimodality model could detect breast and esophageal carcinomas with high diagnostic performance (area
under the receiver operating characteristic curve of 0.890 and 0.880, respectively).
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Introduction

Breast and esophageal carcinomas are common carcino-
matous types worldwide. One in 8—10 women suffers from
breast carcinoma [1]. Esophageal carcinoma is the ninth
most common type of carcinoma [2]. Although CT is not a
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screening modality for detecting these carcinomas, they are
not so rare that they are found on CT incidentally because of
the increase in the number of CT examinations [3]. Precise
diagnosis of breast and esophageal carcinomas on CT can
facilitate earlier therapeutic intervention.

Since the mid-2010s, the number of studies on the appli-
cation of deep learning in radiology has been increasing
[4-8]. Deep learning can be applied to detecting [9-12],
staging [13-17], and classifying [18-20] lesions. Despite
their merits, most deep learning models have been devel-
oped for a single task, and this feature of conventional deep
learning models can be represented as the word of “weak
artificial intelligence.” Most recently, large language mod-
els or large multimodality models (LMMs) have gained
social attention. Although most conventional deep learning
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models developed for diagnosing diseases output scalar or
vector data, LMMs can return the output data in the form
of natural language. The most well-known LMM is GPT-
4, which is available from Open Al. Applications of this
LMM to radiological tasks have been attempted [21-23].
For example, GPT-4 has been reported to be able to gener-
ate radiological reports [24]. However, the use of this model
requires external data transmission; thus, privacy protection
must be ensured during this process [25]. This hinders the
application of GPT-4 to large-scale data. In contrast, other
LMMs can be downloaded to local computers. Although
LMMs comprise a large number of parameters, dedicated
techniques (e.g., parameter-efficient fine-tuning technique)
allow the efficient fine-tuning of these models. Considering
these factors, we hypothesized that LMMs can be fine-tuned
to perform radiological tasks on a local computer and that
fine-tuned LMMs can detect both breast and esophageal car-
cinomas on CT images.

This study assessed whether fine-tuning LMMs is pos-
sible on a local desktop computer equipped with a single
graphic processing unit and whether fine-tuned LMMs can
successfully detect breast and esophageal carcinomas on
chest contrast-enhanced CT.

Materials and methods

This retrospective study was approved by our Institutional
Review Board, which waived the requirement for written
informed consent considering the retrospective nature of
this study.

Patients

In this study, CT images of patients who underwent contrast-
enhanced CT examination that included the chest region and
were included in previous studies [9, 11] were used (512
patients were overlapped). The structure of the model was
different between the previous studies [9, 11] (conventional
convolutional neural network [26]) and this study (state-
of-the-art vision and language model/LMM [bootstrapping
language-image pre-training with frozen image encoders
and large language models: BLIP-2] [27]). CT images were
allotted to the training, validation, and test datasets based
on the date of the CT examination, aiming to evaluate the
performance of the developed model on a time-independent
test dataset (Fig. 1).

CT imaging

Contrast-enhanced CT examination was performed using CT
scanners from two vendors (Canon Medical Systems [Ota-
wara, Japan] and GE Healthcare [Waukesha, WIJ). A con-
trast-enhancement material was injected via the peripheral
vein within 60 s, and the scan was initiated 90 s after starting
the injection. The scanning and reconstruction parameters
for Canon-CT/GE-CT were as follows: tube current, auto-
matic tube current modulation with a standard deviation/
noise index of 13.0/11.36; tube voltage, 120 kVp for both;
helical pitch, 0.8125/0.984; gantry rotation time, 0.5 s for
both; slice thickness, 5 mm for both; and slice interval, 5 mm
for both.

Patients with breast carcinoma or
esophageal carcinoma (512 patients)

Patients without carcinoma
(60 patients)

Validation dataset
(51 patients)

Training dataset
(401 patients)

Time-independent test dataset
(120 patients)

l

Repeating
Supervised Learning

|

Best model

Fig. 1 Flowchart of the patient selection process
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Reference data: text data on diagnosis

For the training and validation datasets, a radiologist with
14 years of imaging experience reviewed all CT images slice
by slice and recorded the presence of breast and esopha-
geal carcinomas in a csv file. For slices in which breast and
esophageal carcinomas were present, the phrases “suspi-
cious of breast carcinoma” and “suspicious of esophageal
carcinoma”, respectively, were recorded. For slices where
breast and esophageal carcinomas are absent, the phrase “no
lesion” was recorded. In these processes, the histopathologi-
cal records and, if present, mammography and ultrasound
records for the breast carcinoma and endoscopy records
for the esophageal carcinoma were referenced. For the test
dataset, another radiologist with 11 years of imaging experi-
ence was also involved in establishing the reference stand-
ard, and the evaluation was performed by consensus reading.

Data preprocessing

CT images obtained in regions other than the chest region
were excluded from the analysis. Furthermore, because there
was an imbalance in the numbers of CT slices in which car-
cinomas were present and absent, CT slices without lesions
were under-sampled, and the number of these CT slices
was reduced to 1/10 for the training and validation datasets.
Using Pydicom (https://pydicom.github.io/), CT images
with digital imaging and communications in the medicine
format were rescaled so that their appearance was the same
as the soft tissue window setting and were saved in the jpg
format (512 x 512 pixels).

Implementation and fine-tuning of the LMM

The LMM was fine-tuned on a computer equipped with
a graphics processing unit of Quadro P5000 (NVIDIA),
a central processing unit of Core(TM) 19-9900 K (Intel),
and 64.0 GB of random-access memory. PyTorch (ver-
sion 2.1.1; https://pytorch.org/) and Transformers (version
4.35.2; https://huggingface.co/) were used.

The image and text data were processed using the Auto-
Processor function (https://huggingface.co/Salesforce/
blip2-opt-2.7b). This processor comprises BlipImage-
Processor, an image processor, and GPT2TokenizerFast,
a tokenizer, with a vocabulary size of 50,265.

BLIP-2 (https://huggingface.co/Salesforce/blip2-opt-2.
7b) [27], which is a pre-trained vision and language model,
was fine-tuned. The model comprised the vision, gq-for-
mer, and language models (Fig. 2), and the parameters in
the fcl layer in the vision and g-former (query, key, and
dense layers) models were fine-tuned using Low-Rank-
Adaptation (r=16, lora_alpha=32, lora_dropout=0.3,
bias =“lora_only”) [28]. The other hyperparameters were
as follows: epoch, 3; and optimizer, Adam with Ir =5e-4.
These hyperparameters were tuned using only the training
and validation datasets. Because of the random nature of
the training process, supervised learning was performed
10 times (10 trials), and the best performing model on the
validation dataset was selected. The performance of the
best performing model was further tested using the time-
independent test dataset. The code used for fine-tuning
the LMM can be made available upon reasonable request.

- Large multimodality model

\

Image Encoder

/
fc1
layer

Q-Former

Large Language Model
(LLM)

Input

N

Output: “suspicious of breast carcinoma.”

Fig.2 Conceptual image of the fine-tuning of the large multimodality model
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Reader test

To compare the performance of the fine-tuned model with
readers, two radiology residents (reader A and B with imag-
ing experience of 2 years and O year, respectively) were
involved. They independently evaluated each image for the
presence of malignant lesions. They were blinded to patient
background information. Before the reader test, the radiolo-
gist with 14 years of imaging experience randomized all
image datasets.

Statistical analysis

All statistical analyses were performed using R (version
4.1.2; https://www.r-project.org/). The model’s output was
judged as correct when it exactly matched the reference data
(“suspicious of breast carcinoma”/”’suspicious of esopha-
geal carcinoma”/”’no lesion”). Receiver operating charac-
teristic (ROC) curve analysis was performed to calculate
the area under the ROC curve (AUC) for the performance of
the LMM and readers in detecting carcinomas. AUC of the
LMM was compared with those of readers with the DeL.ong
test. Because of the multiple comparisons (LMM vs. reader
1 and LMM vs. reader 2), the Bonferroni correction was
performed. A p-value of less than 0.025 (=0.050 / 2) was
considered to indicate a statistically significant difference.

Results
Patients
In the training, validation, and test datasets, 201, 26, and 30
patients with breast carcinoma and 200, 25, and 30 patients

with esophageal carcinoma, respectively, were included in
this study. Patients without lesions (n=60) were included

in the test datasets. In total, 401, 51, and 120 patients
were included in the training (age, 62.9 + 12.9 years; 169
males and 232 females; 5,194 images), validation (age,
65.5+11.6 years; 23 males and 28 females; 583 images),
and test (age, 64.6 + 14.2 years; 60 males and 60 females;
7,349 images) datasets, respectively. The numbers of CT
images for the breast carcinoma, esophageal carcinoma, and
no lesion categories used in the final analyses were 927,
2180, and 2087; 80, 233, and 270; and 184, 246, and 6919
for the training, validation, and test datasets, respectively.
Note that because under-sampling was performed for the
no lesion category in the training and validation datasets,
the proportion for the number of patients in this category is
relatively low compared with that in the test dataset.

The mean sizes of breast carcinomas on the training,
validation, and test datasets were 31.6, 32.0, and 37.8 mm,
respectively. The mean lengths of esophageal carcinomas
in the training, validation, and test datasets were 54.6, 46.6,
and 41.2 mm, respectively. T stages (Tis and T1/T2/T3/T4)
for the breast carcinoma were the following: 76/87/24/14,
15/8/1/2, and 16/11/2/1 for the training, validation, and test
dataset, respectively. T stages for the esophageal carcinoma
were the following: 27/72/81/20, 4/8/11/2, and 3/17/9/1, for
the training, validation, and test dataset, respectively.

Performance of the LMM and readers

The macroaverage sensitivity and accuracy of the fine-tuned
LMM that performed best among the 10 trials were 0.761
and 0.768, respectively (Table 1). The performance of this
model (trial 4) was further evaluated on the test dataset. The
sensitivities of the fine-tuned LMM in the test dataset for
detecting breast and esophageal carcinomas were 0.929 and
0.951, respectively, which were significantly higher than
those of readers (0.533-0.847 and 0.683-0.963, respec-
tively), except for the sensitivity of model vs. reader 1 in

Table 1 Image-based Trial

. Sensitivity Accuracy
performance of the model in the . .
validation dataset Breast carcinoma Esophageal No lesion Macroaverage
carcinoma
1 0.225 0.682 0.941 0.616 0.739
2 0.013 0.391 0.578 0.327 0.425
3 0.400 0.807 0.822 0.676 0.758
4 0.713 0.897 0.674 0.761 0.768
5 0.250 0.927 0.719 0.632 0.738
6 0.863 0.936 0.374 0.724 0.666
7 0.400 0.777 0.852 0.676 0.760
8 0.650 0.948 0.552 0.717 0.724
9 0.013 0.549 0.730 0.430 0.559
10 0.775 0.850 0.593 0.739 0.720

The best performing model in the average sensitivity and accuracy is highlighted with bold
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esophageal carcinoma (Table 2). The diagnostic performance
of the fine-tuned LMM for detecting breast and esophageal
carcinomas was high, with AUC values of 0.890 (95%ClI
0.871-0.909) and 0.880 (95%CI 0.865-0.894), respectively
(Fig. 3). Though the diagnostic performance of the fine-
tuned LMM in detecting breast and esophageal carcinomas
was lower than that of reader 1 (0.920 [95%CI 0.894-0.946]
[p=0.025] and 0.967 [95%CI 0.955-0.979] [p <0.001],
respectively), it performed significantly better than reader 2
(0.766 [95%CT1 0.730-0.802] [p < 0.001] and 0.840 [95%CI
0.811-0.869] [p=0.012], respectively) (Fig. 4).

Discussion

From this preliminary study, we found that LMMs can
be fine-tuned on a local desktop computer equipped with
a graphics processing unit and that the fine-tuned model
could detect both breast and esophageal carcinomas on chest
contrast-enhanced CT with high diagnostic performance sig-
nificantly better than a less-experienced reader.

Studies have reported that breast carcinoma could be
detected automatically using deep learning models [9, 10].
Furthermore, deep learning models with the ability to detect
esophageal carcinomas have been developed [11, 12]. How-
ever, the deep learning models developed in these studies
could detect a single type of carcinomas. The merit of the
fine-tuned LMM developed in our study lies in its ability
to detect both breast and esophageal carcinomas simultane-
ously with high performance. Because the reference data can
be provided in natural language as we have done in our study
(“suspicious of breast carcinoma,” “suspicious of esophageal
carcinoma,” and “no lesion”), LMMs may have the potential

to detect several other types of tumors when trained with
data on those tumors.

BLIP-2, which we used in this study, is one of the LMMs.
This model comprises the image encoder, q-former, and
large language models. Q-former is a lightweight trans-
former that feeds visual features to the large language model
to output the desired text [27]. For fine-tuning this model,
we used Low-Rank-Adaptation, which is one of the param-
eter-efficient fine-tuning techniques. This freezes the pre-
trained model weights and injects trainable rank decomposi-
tion matrices into the model layers, reducing the number of
parameters that should be fine-tuned [28]. This would have
allowed the fine-tuning of the LMM on a desktop computer
with a single graphics processing unit in the current task.
For our study, we fine-tuned the parameters in the fc1 layer
of the image encoder in addition to the query, key, and dense
layers of the gq-former model. This resulted from the fact that
adding the fcl layer of the image encoder for fine-tuning
resulted in better performance in our preliminary assess-
ment using the training and validation datasets. In contrast,
the large language model in the LMM was not fine-tuned.

This study has some limitations. First, although large
models tend to require large numbers of dataset for train-
ing, the number of images included in the training dataset
in our study was relatively small (5194 images). In addi-
tion, it is known from existing research that single-task-
specific models often achieve better performance than
multitasking models. These may have been the reasons
for the relatively lower diagnostic performance in detect-
ing breast carcinoma (AUC =0.890) and esophageal carci-
noma (AUC =0.880) than previous reports (AUC =0.967
and 0.910-0.950 for breast carcinoma [9] and esophageal
carcinoma [11, 12], respectively). Future studies including

Table 2 The confusion
matrix of the fine-tuned large
multimodality model and
readers in the test dataset

Output Sensitivity
Reference standard Breast carcinoma Esophageal No lesion Values Comparison
carcinoma (vs. model)
Model
Breast carcinoma (184 images) 171 1 12 0.929
Esophageal carcinoma (246 images) 2 234 10 0.951
No lesion (6919 images) 1070 1363 4486 0.648
Reader 1
Breast carcinoma (184 images) 156 0 28 0.847 0.005*
Esophageal carcinoma (246 images) 0 237 9 0.963 0.663
No lesion (6919 images) 57 213 6649 0.961 <0.001*
Reader 2
Breast carcinoma (184 images) 98 0 86 0.533 <0.001*
Esophageal carcinoma (246 images) 0 168 78 0.683 <0.001*
No lesion (6919 images) 0 19 6900 0.997 <0.001*

Comparison of sensitivity was performed with the McNemar test

“indicate a statistically significant difference
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Fig.3 Receiver operating characteristic curves for detecting breast carcinoma (a, b) and esophageal carcinoma (¢, d) by the fine-tuned large
multimodality model (a—d [solid line]), reader 1 (a, ¢ [dotted line]) and reader 2 (b, d [dotted line]) in the test dataset

larger numbers of patients are necessary to consolidate the
results of our study. Second, the model’s performance was
not externally validated using geographic sets. According
to Walston, et al., temporal and geographic sets are both
categorized as external datasets, while random splitting,
cross-validation, and leave-one-out methods fall into inter-
nal datasets [29]. In our study, to enhance the robustness of
results as much as possible, a time-independent test dataset

@ Springer

was used. Third, there was a relatively wide variance in
the sensitivity of the models among the 10 trials (particu-
larly that for breast carcinoma [0.013-0.863]), indicating
instability in the fine-tuning process of the LMM. Fourth,
benign breast lesions, such as fibroadenoma, phyllodes
tumors, cysts, and mastopathy, were not included in this
study. Because of this, there can be risks of overlooking
of those benign lesions and misclassification of those
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Fig.4 CT images of a 70-year-old female patient with a right breast
carcinoma (a) and a 78-year-old male patient with esophageal car-
cinoma (b). Both carcinomas (white arrows in (a) and (b)) were
detected by the fine-tuned large multimodality model and reader 1,
while reader 2 missed those lesions

lesions as malignant. However, overlooking of benign
lesions would not be clinically problematic. In addition,
other modalities, such as ultrasonography and mammog-
raphy, would be more effective in the differential diag-
nosis of breast lesions rather than CT. Fifth, the devel-
oped model only answers whether breast or esophageal
cancer is present. Developing the model which provides
more detailed information, such as the exact location of
the cancer (specific slice and area) and its stage, requires
further ingenuity. Future studies focusing on this issue by
including large numbers of diseases with various locations
would be needed. Finally, carcinomas arising from organs
other than the breast and esophagus cannot be detected by
our model. The reasons for focusing on those carcinomas
in this study were the following: it is common to detect
lung carcinomas and bone tumors with CT images set at
the lung and bone window settings, respectively. As for
the mediastinal tumors, the incidence is much lower than
that of breast carcinoma and esophageal carcinoma. While

thyroid nodules are detected commonly at CT examina-
tion, most of them are benign. Future studies including
carcinomas arising from several other organs are expected.

In conclusion, fine-tuned LMMs could detect both breast
and esophageal carcinomas simultaneously with high diag-
nostic performance significantly better than a less-experi-
enced reader. Because reference data can be provided in a
natural language format for fine-tuning the LMM, carcino-
mas arising from several other organs may be detected using
a single model. Future research into developing such models
is expected.

Author contributions All authors contributed to the study concep-
tion and design. Material Preparation and analysis were performed by
Koichiro Yasaka. Data collection was performed by Koichiro Yasaka,
Motohide Kawamura, Yuki Sonoda, and Takatoshi Kubo. The first draft
of the manuscript was written by Koichiro Yasaka and all authors com-
mented on previous versions of the manuscript. All authors read and
approved the final manuscript.

Funding The authors declare that no funds, grants, or other support
was received during the preparation of this manuscript.

Declarations

Conflict of interest The authors have no relevant financial or non-fi-
nancial interests to disclose.

Ethics approval This study was performed in line with the principles
of the Declaration of Helsinki. Approval was granted by the Ethics
Committee of Graduate School of Medicine, The University of Tokyo.
(Date May 2009/No 2561-(25)).

Consent to participate Requirement for obtaining written informed
consent was waived by the Ethics Committee due to the retrospective
nature of this study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Harbeck N, Gnant
2017;389(10074):1134-50.

2. LagergrenJ, Smyth E, Cunningham D, Lagergren P. Oesophageal
cancer. The Lancet. 2017;390(10110):2383-96.

M. Breast cancer. Lancet.

@ Springer


http://creativecommons.org/licenses/by/4.0/

786

Japanese Journal of Radiology (2025) 43:779-786

11.

12.

13.

14.

16.

17.

18.

Mettler FA Jr, Thomadsen BR, Bhargavan M, Gilley DB, Gray JE,
Lipoti JA, et al. Medical radiation exposure in the U.S. in 2006:
preliminary results. Health Phys. 2008;95(5):502-7.

Yasaka K, Abe O. Deep learning and artificial intelligence in
radiology: current applications and future directions. PLoS Med.
2018;15(11):e1002707.

Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S,
Pal CJ, et al. Deep learning: a primer for radiologists. Radiograph-
ics. 2017;37(7):2113-31.

Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learn-
ing with convolutional neural network in radiology. Jpn J Radiol.
2018;36(4):257-72.

Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H,
Klang E. Convolutional neural networks for radiologic images: a
radiologist’s guide. Radiology. 2019;290(3):590-606.

Nakaura T, Higaki T, Awai K, Ikeda O, Yamashita Y. A primer
for understanding radiology articles about machine learning and
deep learning. Diagn Interv Imaging. 2020;101(12):765-70.
Yasaka K, Sato C, Hirakawa H, Fujita N, Kurokawa M, Watanabe
Y, et al. Impact of deep learning on radiologists and radiology
residents in detecting breast cancer on CT: a cross-vendor test
study. Clin Radiol. 2024;79(1):e41-7.

. Koh J, Yoon Y, Kim S, Han K, Kim EK. Deep learning for the

detection of breast cancers on chest computed tomography. Clin
Breast Cancer. 2022;22(1):26-31.

Yasaka K, Hatano S, Mizuki M, Okimoto N, Kubo T, Shibata
E, et al. Effects of deep learning on radiologists’ and radiology
residents’ performance in identifying esophageal cancer on CT.
Br J Radiol. 2023;96(1150):20220685.

Takeuchi M, Seto T, Hashimoto M, Ichihara N, Morimoto Y,
Kawakubo H, et al. Performance of a deep learning-based identifi-
cation system for esophageal cancer from CT images. Esophagus.
2021;18(3):612-20.

Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver Fibrosis:
deep convolutional neural network for staging by using gadox-
etic acid-enhanced hepatobiliary phase MR images. Radiology.
2018;287(1):146-55.

Hasenstab KA, Yuan N, Retson T, Conrad DJ, Kligerman S, Lynch
DA, et al. Automated CT staging of chronic obstructive pulmo-
nary disease severity for predicting disease progression and mor-
tality with a deep learning convolutional neural network. Radiol
Cardiothorac Imaging. 2021;3(2):e200477.

. Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Deep learn-

ing for staging liver fibrosis on CT: a pilot study. Eur Radiol.
2018;28(11):4578-85.

Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva
F, et al. Deep learning for hierarchical severity staging of ante-
rior cruciate ligament injuries from MRI. Radiol Artif Intell.
2020;2(4):¢190207.

Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Prediction of
bone mineral density from computed tomography: application of
deep learning with a convolutional neural network. Eur Radiol.
2020;30(6):3549-57.

Tak D, Ye Z, Zapaischykova A, Zha Y, Boyd A, Vajapeyam S,
et al. Noninvasive molecular subtyping of pediatric low-grade

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

glioma with self-supervised transfer learning. Radiol Artif Intell.
2024;6(3):¢230333.

Lee W, Lee H, Lee H, Park EK, Nam H, Kooi T. Transformer-
based deep neural network for breast cancer classification
on digital breast tomosynthesis images. Radiol Artif Intell.
2023;5(3):€220159.

Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with con-
volutional neural network for differentiation of liver masses at
dynamic contrast-enhanced CT: a preliminary study. Radiology.
2018;286(3):887-96.

Krishna S, Bhambra N, Bleakney R, Bhayana R. Evaluation of
reliability, repeatability, robustness, and confidence of GPT-3.5
and GPT-4 on a radiology board-style examination. Radiology.
2024;311(2):e232715.

Zhou Y, Ong H, Kennedy P, Wu CC, Kazam J, Hentel K,
et al. Evaluating GPT-V4 (GPT-4 with Vision) on detec-
tion of radiologic findings on chest radiographs. Radiology.
2024;311(2):¢233270.

Gertz RJ, Dratsch T, Bunck AC, Lennartz S, Iuga Al, Hellmich
MG, et al. Potential of GPT-4 for detecting errors in radiol-
ogy reports: implications for reporting accuracy. Radiology.
2024;311(1):e232714.

Nakaura T, Yoshida N, Kobayashi N, Shiraishi K, Nagayama
Y, Uetani H, et al. Preliminary assessment of automated radiol-
ogy report generation with generative pre-trained transformers:
comparing results to radiologist-generated reports. Jpn J Radiol.
2024;42(2):190-200.

Mukherjee P, Hou B, Lanfredi RB, Summers RM. Feasibility of
using the privacy-preserving large language model vicuna for
labeling radiology reports. Radiology. 2023;309(1):e231147.
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification
with deep convolutional neural networks. Advances in Neural
Information Processing System 25 (NIPS 2012) https://papers.
nips.cc/paper/4824-imagenet-classification-with-deep-convolutio
nal-neural-networks. Published 2012. Accessed 14 Dec 2023.
LiJ, LiD, Savarese S, Hoi S, Research. S. BLIP-2: Bootstrapping
Language-Image Pre-training with Frozen Image Encoders and
Large Language Models. Cornell University Library https://arxiv.
org/pdf/230112597. Published 2023 Accessed 15 June 2024.

Hu E, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. LoRA:
LOW-RANK ADAPTATION OF LARGE LANGUAGE MOD-
ELS. Cornell University Library https://arxiv.org/pdf/210609685.
Published 2021 Accessed 15 June 2024.

Walston SL, Seki H, Takita H, Mitsuyama Y, Sato S, Hagi-
wara A, et al. Data set terminology of deep learning in medi-
cine: a historical review and recommendation. Jpn J Radiol.
2024;42(10):1100-9.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/pdf/230112597
https://arxiv.org/pdf/230112597
https://arxiv.org/pdf/210609685

	Large multimodality model fine-tuned for detecting breast and esophageal carcinomas on CT: a preliminary study
	Abstract
	Purpose 
	Materials and methods 
	Results 
	Conclusions 
	Secondary abstract 

	Introduction
	Materials and methods
	Patients
	CT imaging
	Reference data: text data on diagnosis
	Data preprocessing
	Implementation and fine-tuning of the LMM
	Reader test
	Statistical analysis

	Results
	Patients
	Performance of the LMM and readers

	Discussion
	References




