
Vol.:(0123456789)

Japanese Journal of Radiology (2025) 43:779–786 
https://doi.org/10.1007/s11604-024-01718-w

ORIGINAL ARTICLE

Large multimodality model fine‑tuned for detecting breast 
and esophageal carcinomas on CT: a preliminary study

Koichiro Yasaka1   · Motohide Kawamura1 · Yuki Sonoda1 · Takatoshi Kubo1 · Shigeru Kiryu2 · Osamu Abe1

Received: 22 October 2024 / Accepted: 2 December 2024 / Published online: 13 December 2024 
© The Author(s) 2024

Abstract
Purpose  This study aimed to develop a large multimodality model (LMM) that can detect breast and esophageal carcinomas 
on chest contrast-enhanced CT.
Materials and methods  In this retrospective study, CT images of 401 (age, 62.9 ± 12.9 years; 169 males), 51 (age, 
65.5 ± 11.6 years; 23 males), and 120 (age, 64.6 ± 14.2 years; 60 males) patients were used in the training, validation, and 
test phases. The numbers of CT images with breast carcinoma, esophageal carcinoma, and no lesion were 927, 2180, and 
2087; 80, 233, and 270; and 184, 246, and 6919 for the training, validation, and test datasets, respectively. The LMM was 
fine-tuned using CT images as input and text data (“suspicious of breast carcinoma”/ “suspicious of esophageal carcinoma”/ 
“no lesion”) as reference data on a desktop computer equipped with a single graphic processing unit. Because of the random 
nature of the training process, supervised learning was performed 10 times. The performance of the best performing model 
on the validation dataset was further tested using the time-independent test dataset. The detection performance was evaluated 
by calculating the area under the receiver operating characteristic curve (AUC).
Results  The sensitivities of the fine-tuned LMM for detecting breast and esophageal carcinomas in the test dataset were 0.929 
and 0.951, respectively. The diagnostic performance of the fine-tuned LMM for detecting breast and esophageal carcinomas 
was high, with AUCs of 0.890 (95%CI 0.871–0.909) and 0.880 (95%CI 0.865–0.894), respectively.
Conclusions  The fine-tuned LMM could detect both breast and esophageal carcinomas on chest contrast-enhanced CT with 
high diagnostic performance.
Secondary abstract  Usefulness of large multimodality models in chest cancer imaging has not been assessed so far. The 
fine-tuned large multimodality model could detect breast and esophageal carcinomas with high diagnostic performance (area 
under the receiver operating characteristic curve of 0.890 and 0.880, respectively).
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Introduction

Breast and esophageal carcinomas are common carcino-
matous types worldwide. One in 8–10 women suffers from 
breast carcinoma [1]. Esophageal carcinoma is the ninth 
most common type of carcinoma [2]. Although CT is not a 

screening modality for detecting these carcinomas, they are 
not so rare that they are found on CT incidentally because of 
the increase in the number of CT examinations [3]. Precise 
diagnosis of breast and esophageal carcinomas on CT can 
facilitate earlier therapeutic intervention.

Since the mid-2010s, the number of studies on the appli-
cation of deep learning in radiology has been increasing 
[4–8]. Deep learning can be applied to detecting [9–12], 
staging [13–17], and classifying [18–20] lesions. Despite 
their merits, most deep learning models have been devel-
oped for a single task, and this feature of conventional deep 
learning models can be represented as the word of “weak 
artificial intelligence.” Most recently, large language mod-
els or large multimodality models (LMMs) have gained 
social attention. Although most conventional deep learning 
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models developed for diagnosing diseases output scalar or 
vector data, LMMs can return the output data in the form 
of natural language. The most well-known LMM is GPT-
4, which is available from Open AI. Applications of this 
LMM to radiological tasks have been attempted [21–23]. 
For example, GPT-4 has been reported to be able to gener-
ate radiological reports [24]. However, the use of this model 
requires external data transmission; thus, privacy protection 
must be ensured during this process [25]. This hinders the 
application of GPT-4 to large-scale data. In contrast, other 
LMMs can be downloaded to local computers. Although 
LMMs comprise a large number of parameters, dedicated 
techniques (e.g., parameter-efficient fine-tuning technique) 
allow the efficient fine-tuning of these models. Considering 
these factors, we hypothesized that LMMs can be fine-tuned 
to perform radiological tasks on a local computer and that 
fine-tuned LMMs can detect both breast and esophageal car-
cinomas on CT images.

This study assessed whether fine-tuning LMMs is pos-
sible on a local desktop computer equipped with a single 
graphic processing unit and whether fine-tuned LMMs can 
successfully detect breast and esophageal carcinomas on 
chest contrast-enhanced CT.

Materials and methods

This retrospective study was approved by our Institutional 
Review Board, which waived the requirement for written 
informed consent considering the retrospective nature of 
this study.

Patients

In this study, CT images of patients who underwent contrast-
enhanced CT examination that included the chest region and 
were included in previous studies [9, 11] were used (512 
patients were overlapped). The structure of the model was 
different between the previous studies [9, 11] (conventional 
convolutional neural network [26]) and this study (state-
of-the-art vision and language model/LMM [bootstrapping 
language-image pre-training with frozen image encoders 
and large language models: BLIP-2] [27]). CT images were 
allotted to the training, validation, and test datasets based 
on the date of the CT examination, aiming to evaluate the 
performance of the developed model on a time-independent 
test dataset (Fig. 1).

CT imaging

Contrast-enhanced CT examination was performed using CT 
scanners from two vendors (Canon Medical Systems [Ota-
wara, Japan] and GE Healthcare [Waukesha, WI]). A con-
trast-enhancement material was injected via the peripheral 
vein within 60 s, and the scan was initiated 90 s after starting 
the injection. The scanning and reconstruction parameters 
for Canon-CT/GE-CT were as follows: tube current, auto-
matic tube current modulation with a standard deviation/
noise index of 13.0/11.36; tube voltage, 120 kVp for both; 
helical pitch, 0.8125/0.984; gantry rotation time, 0.5 s for 
both; slice thickness, 5 mm for both; and slice interval, 5 mm 
for both.

Fig. 1   Flowchart of the patient selection process
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Reference data: text data on diagnosis

For the training and validation datasets, a radiologist with 
14 years of imaging experience reviewed all CT images slice 
by slice and recorded the presence of breast and esopha-
geal carcinomas in a csv file. For slices in which breast and 
esophageal carcinomas were present, the phrases “suspi-
cious of breast carcinoma” and “suspicious of esophageal 
carcinoma”, respectively, were recorded. For slices where 
breast and esophageal carcinomas are absent, the phrase “no 
lesion” was recorded. In these processes, the histopathologi-
cal records and, if present, mammography and ultrasound 
records for the breast carcinoma and endoscopy records 
for the esophageal carcinoma were referenced. For the test 
dataset, another radiologist with 11 years of imaging experi-
ence was also involved in establishing the reference stand-
ard, and the evaluation was performed by consensus reading.

Data preprocessing

CT images obtained in regions other than the chest region 
were excluded from the analysis. Furthermore, because there 
was an imbalance in the numbers of CT slices in which car-
cinomas were present and absent, CT slices without lesions 
were under-sampled, and the number of these CT slices 
was reduced to 1/10 for the training and validation datasets. 
Using Pydicom (https://​pydic​om.​github.​io/), CT images 
with digital imaging and communications in the medicine 
format were rescaled so that their appearance was the same 
as the soft tissue window setting and were saved in the jpg 
format (512 × 512 pixels).

Implementation and fine‑tuning of the LMM

The LMM was fine-tuned on a computer equipped with 
a graphics processing unit of Quadro P5000 (NVIDIA), 
a central processing unit of Core(TM) i9-9900 K (Intel), 
and 64.0 GB of random-access memory. PyTorch (ver-
sion 2.1.1; https://​pytor​ch.​org/) and Transformers (version 
4.35.2; https://​huggi​ngface.​co/) were used.

The image and text data were processed using the Auto-
Processor function (https://​huggi​ngface.​co/​Sales​force/​
blip2-​opt-2.​7b). This processor comprises BlipImage-
Processor, an image processor, and GPT2TokenizerFast, 
a tokenizer, with a vocabulary size of 50,265.

BLIP-2 (https://​huggi​ngface.​co/​Sales​force/​blip2-​opt-2.​
7b) [27], which is a pre-trained vision and language model, 
was fine-tuned. The model comprised the vision, q-for-
mer, and language models (Fig. 2), and the parameters in 
the fc1 layer in the vision and q-former (query, key, and 
dense layers) models were fine-tuned using Low-Rank-
Adaptation (r = 16, lora_alpha = 32, lora_dropout = 0.3, 
bias = “lora_only”) [28]. The other hyperparameters were 
as follows: epoch, 3; and optimizer, Adam with lr = 5e-4. 
These hyperparameters were tuned using only the training 
and validation datasets. Because of the random nature of 
the training process, supervised learning was performed 
10 times (10 trials), and the best performing model on the 
validation dataset was selected. The performance of the 
best performing model was further tested using the time-
independent test dataset. The code used for fine-tuning 
the LMM can be made available upon reasonable request.

Fig. 2   Conceptual image of the fine-tuning of the large multimodality model

https://pydicom.github.io/
https://pytorch.org/
https://huggingface.co/
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/blip2-opt-2.7b
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Reader test

To compare the performance of the fine-tuned model with 
readers, two radiology residents (reader A and B with imag-
ing experience of 2 years and 0 year, respectively) were 
involved. They independently evaluated each image for the 
presence of malignant lesions. They were blinded to patient 
background information. Before the reader test, the radiolo-
gist with 14 years of imaging experience randomized all 
image datasets.

Statistical analysis

All statistical analyses were performed using R (version 
4.1.2; https://​www.r-​proje​ct.​org/). The model’s output was 
judged as correct when it exactly matched the reference data 
(“suspicious of breast carcinoma”/”suspicious of esopha-
geal carcinoma”/”no lesion”). Receiver operating charac-
teristic (ROC) curve analysis was performed to calculate 
the area under the ROC curve (AUC) for the performance of 
the LMM and readers in detecting carcinomas. AUC of the 
LMM was compared with those of readers with the DeLong 
test. Because of the multiple comparisons (LMM vs. reader 
1 and LMM vs. reader 2), the Bonferroni correction was 
performed. A p-value of less than 0.025 (= 0.050 / 2) was 
considered to indicate a statistically significant difference.

Results

Patients

In the training, validation, and test datasets, 201, 26, and 30 
patients with breast carcinoma and 200, 25, and 30 patients 
with esophageal carcinoma, respectively, were included in 
this study. Patients without lesions (n = 60) were included 

in the test datasets. In total, 401, 51, and 120 patients 
were included in the training (age, 62.9 ± 12.9 years; 169 
males and 232 females; 5,194 images), validation (age, 
65.5 ± 11.6 years; 23 males and 28 females; 583 images), 
and test (age, 64.6 ± 14.2 years; 60 males and 60 females; 
7,349 images) datasets, respectively. The numbers of CT 
images for the breast carcinoma, esophageal carcinoma, and 
no lesion categories used in the final analyses were 927, 
2180, and 2087; 80, 233, and 270; and 184, 246, and 6919 
for the training, validation, and test datasets, respectively. 
Note that because under-sampling was performed for the 
no lesion category in the training and validation datasets, 
the proportion for the number of patients in this category is 
relatively low compared with that in the test dataset.

The mean sizes of breast carcinomas on the training, 
validation, and test datasets were 31.6, 32.0, and 37.8 mm, 
respectively. The mean lengths of esophageal carcinomas 
in the training, validation, and test datasets were 54.6, 46.6, 
and 41.2 mm, respectively. T stages (Tis and T1/T2/T3/T4) 
for the breast carcinoma were the following: 76/87/24/14, 
15/8/1/2, and 16/11/2/1 for the training, validation, and test 
dataset, respectively. T stages for the esophageal carcinoma 
were the following: 27/72/81/20, 4/8/11/2, and 3/17/9/1, for 
the training, validation, and test dataset, respectively.

Performance of the LMM and readers

The macroaverage sensitivity and accuracy of the fine-tuned 
LMM that performed best among the 10 trials were 0.761 
and 0.768, respectively (Table 1). The performance of this 
model (trial 4) was further evaluated on the test dataset. The 
sensitivities of the fine-tuned LMM in the test dataset for 
detecting breast and esophageal carcinomas were 0.929 and 
0.951, respectively, which were significantly higher than 
those of readers (0.533–0.847 and 0.683–0.963, respec-
tively), except for the sensitivity of model vs. reader 1 in 

Table 1   Image-based 
performance of the model in the 
validation dataset

The best performing model in the average sensitivity and accuracy is highlighted with bold

Trial Sensitivity Accuracy
Breast carcinoma Esophageal 

carcinoma
No lesion Macroaverage

1 0.225 0.682 0.941 0.616 0.739
2 0.013 0.391 0.578 0.327 0.425
3 0.400 0.807 0.822 0.676 0.758
4 0.713 0.897 0.674 0.761 0.768
5 0.250 0.927 0.719 0.632 0.738
6 0.863 0.936 0.374 0.724 0.666
7 0.400 0.777 0.852 0.676 0.760
8 0.650 0.948 0.552 0.717 0.724
9 0.013 0.549 0.730 0.430 0.559
10 0.775 0.850 0.593 0.739 0.720

https://www.r-project.org/
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esophageal carcinoma (Table 2). The diagnostic performance 
of the fine-tuned LMM for detecting breast and esophageal 
carcinomas was high, with AUC values of 0.890 (95%CI 
0.871–0.909) and 0.880 (95%CI 0.865–0.894), respectively 
(Fig. 3). Though the diagnostic performance of the fine-
tuned LMM in detecting breast and esophageal carcinomas 
was lower than that of reader 1 (0.920 [95%CI 0.894–0.946] 
[p = 0.025] and 0.967 [95%CI 0.955–0.979] [p < 0.001], 
respectively), it performed significantly better than reader 2 
(0.766 [95%CI 0.730–0.802] [p < 0.001] and 0.840 [95%CI 
0.811–0.869] [p = 0.012], respectively) (Fig. 4).

Discussion

From this preliminary study, we found that LMMs can 
be fine-tuned on a local desktop computer equipped with 
a graphics processing unit and that the fine-tuned model 
could detect both breast and esophageal carcinomas on chest 
contrast-enhanced CT with high diagnostic performance sig-
nificantly better than a less-experienced reader.

Studies have reported that breast carcinoma could be 
detected automatically using deep learning models [9, 10]. 
Furthermore, deep learning models with the ability to detect 
esophageal carcinomas have been developed [11, 12]. How-
ever, the deep learning models developed in these studies 
could detect a single type of carcinomas. The merit of the 
fine-tuned LMM developed in our study lies in its ability 
to detect both breast and esophageal carcinomas simultane-
ously with high performance. Because the reference data can 
be provided in natural language as we have done in our study 
(“suspicious of breast carcinoma,” “suspicious of esophageal 
carcinoma,” and “no lesion”), LMMs may have the potential 

to detect several other types of tumors when trained with 
data on those tumors.

BLIP-2, which we used in this study, is one of the LMMs. 
This model comprises the image encoder, q-former, and 
large language models. Q-former is a lightweight trans-
former that feeds visual features to the large language model 
to output the desired text [27]. For fine-tuning this model, 
we used Low-Rank-Adaptation, which is one of the param-
eter-efficient fine-tuning techniques. This freezes the pre-
trained model weights and injects trainable rank decomposi-
tion matrices into the model layers, reducing the number of 
parameters that should be fine-tuned [28]. This would have 
allowed the fine-tuning of the LMM on a desktop computer 
with a single graphics processing unit in the current task. 
For our study, we fine-tuned the parameters in the fc1 layer 
of the image encoder in addition to the query, key, and dense 
layers of the q-former model. This resulted from the fact that 
adding the fc1 layer of the image encoder for fine-tuning 
resulted in better performance in our preliminary assess-
ment using the training and validation datasets. In contrast, 
the large language model in the LMM was not fine-tuned.

This study has some limitations. First, although large 
models tend to require large numbers of dataset for train-
ing, the number of images included in the training dataset 
in our study was relatively small (5194 images). In addi-
tion, it is known from existing research that single-task-
specific models often achieve better performance than 
multitasking models. These may have been the reasons 
for the relatively lower diagnostic performance in detect-
ing breast carcinoma (AUC = 0.890) and esophageal carci-
noma (AUC = 0.880) than previous reports (AUC = 0.967 
and 0.910–0.950 for breast carcinoma [9] and esophageal 
carcinoma [11, 12], respectively). Future studies including 

Table 2   The confusion 
matrix of the fine-tuned large 
multimodality model and 
readers in the test dataset

Comparison of sensitivity was performed with the McNemar test
* indicate a statistically significant difference

Output Sensitivity

Reference standard Breast carcinoma Esophageal 
carcinoma

No lesion Values Comparison 
(vs. model)

Model
Breast carcinoma (184 images) 171 1 12 0.929
Esophageal carcinoma (246 images) 2 234 10 0.951
No lesion (6919 images) 1070 1363 4486 0.648

Reader 1
Breast carcinoma (184 images) 156 0 28 0.847 0.005*
Esophageal carcinoma (246 images) 0 237 9 0.963 0.663
No lesion (6919 images) 57 213 6649 0.961  < 0.001*

Reader 2
Breast carcinoma (184 images) 98 0 86 0.533  < 0.001*
Esophageal carcinoma (246 images) 0 168 78 0.683  < 0.001*
No lesion (6919 images) 0 19 6900 0.997  < 0.001*
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larger numbers of patients are necessary to consolidate the 
results of our study. Second, the model’s performance was 
not externally validated using geographic sets. According 
to Walston, et al., temporal and geographic sets are both 
categorized as external datasets, while random splitting, 
cross-validation, and leave-one-out methods fall into inter-
nal datasets [29]. In our study, to enhance the robustness of 
results as much as possible, a time-independent test dataset 

was used. Third, there was a relatively wide variance in 
the sensitivity of the models among the 10 trials (particu-
larly that for breast carcinoma [0.013–0.863]), indicating 
instability in the fine-tuning process of the LMM. Fourth, 
benign breast lesions, such as fibroadenoma, phyllodes 
tumors, cysts, and mastopathy, were not included in this 
study. Because of this, there can be risks of overlooking 
of those benign lesions and misclassification of those 

Fig. 3   Receiver operating characteristic curves for detecting breast carcinoma (a, b) and esophageal carcinoma (c, d) by the fine-tuned large 
multimodality model (a–d [solid line]), reader 1 (a, c [dotted line]) and reader 2 (b, d [dotted line]) in the test dataset
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lesions as malignant. However, overlooking of benign 
lesions would not be clinically problematic. In addition, 
other modalities, such as ultrasonography and mammog-
raphy, would be more effective in the differential diag-
nosis of breast lesions rather than CT. Fifth, the devel-
oped model only answers whether breast or esophageal 
cancer is present. Developing the model which provides 
more detailed information, such as the exact location of 
the cancer (specific slice and area) and its stage, requires 
further ingenuity. Future studies focusing on this issue by 
including large numbers of diseases with various locations 
would be needed. Finally, carcinomas arising from organs 
other than the breast and esophagus cannot be detected by 
our model. The reasons for focusing on those carcinomas 
in this study were the following: it is common to detect 
lung carcinomas and bone tumors with CT images set at 
the lung and bone window settings, respectively. As for 
the mediastinal tumors, the incidence is much lower than 
that of breast carcinoma and esophageal carcinoma. While 

thyroid nodules are detected commonly at CT examina-
tion, most of them are benign. Future studies including 
carcinomas arising from several other organs are expected.

In conclusion, fine-tuned LMMs could detect both breast 
and esophageal carcinomas simultaneously with high diag-
nostic performance significantly better than a less-experi-
enced reader. Because reference data can be provided in a 
natural language format for fine-tuning the LMM, carcino-
mas arising from several other organs may be detected using 
a single model. Future research into developing such models 
is expected.
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