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Abstract

Purpose Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence,
but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head)
images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and
neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images
from MRI localizers.

Materials and methods Brain MRI examinations including MPRAGE taken at a single institution for investigation of mild
cognitive impairment, dementia and epilepsy between January 2020 and December 2022 were included retrospectively.
Images taken in 2020 or 2021 were assigned to training and validation datasets, and images from 2022 were used for the test
dataset. Using the training and validation set, we determined one model using visual evaluation by radiologists with refer-
ence to image quality metrics of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). The test dataset was evaluated by visual assessment and quality metrics. Voxel-
based morphometric analysis was also performed, and we evaluated Dice score and volume differences between generated
and original images of major structures were calculated as absolute symmetrized percent change.

Results Training, validation, and test datasets comprised 340 patients (mean age, 56.1 +24.4 years; 195 women), 36 patients
(67.3+18.3 years, 20 women), and 193 patients (59.5 +24.4 years; 111 women), respectively. The test dataset showed: PSNR,
35.4+4.91; SSIM, 0.871 +0.058; and LPIPS 0.045 +0.017. No overfitting was observed. Dice scores for the segmentation
of main structures ranged from 0.788 (left amygdala) to 0.926 (left ventricle). Quadratic weighted Cohen kappa values of
visual score for medial temporal lobe between original and generated images were 0.80-0.88.

Conclusion Images generated using our DL-based model can be used for post-processing and visual evaluation of medial
temporal lobe atrophy.

Keywords Magnetization prepared rapid gradient echo - Voxel-based morphometric analysis - Generative adversarial
network - Machine learning
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However, T1-weighted images, including MPRAGE, are
not a priority in many examinations, such as evaluations for
cerebrovascular disorders [7, 8]. Data acquisition is there-
fore often omitted due to practical limitations on exami-
nation time. In clinical practice, where contrast-enhanced
T1-weighted imaging is performed, 3D turbo spin echo
sequences and 3D gradient echo sequences are preferred
instead of MPRAGE for the better contrast enhancement
or shorter acquisition time [7-9]. Retrospective analysis of
brain morphology with MPRAGE imaging is therefore often
difficult.

Advances in deep learning (DL) have enabled the genera-
tion of various images or the conversion of images from one
domain to another using the idea of the generative adver-
sarial network (GAN) [10-12]. DL is also now being used
for image transformation of medical images [13]. Studies
have examined transformation between different MRI con-
trasts or between different imaging modalities [14—17]. For
analyses of brain morphology, a DL-based method has also
been reported using MR images taken in clinical practice,
such as two-dimensional FLAIR, instead of high-resolution
T1-weighted images [18]. Although the generation of similar
images using DL-based image transformation has become
technically feasible, radiological validation of the generated
images is not yet sufficient, representing a significant barrier
to clinical application. In DL-based image conversion, the
relationship between two domains is captured by the genera-
tor network. While necessary information may be missing
from the source images or model, the network makes up for
such information in the process of image conversion without
consideration of radiological correctness. In other words,
DL-based image transformations, such as inter-modality
transformations, rely heavily on trained networks. These
processes are thus considered to carry a high risk of false
conversion and to require careful evaluation.

The MRI localizer has T1-weighted contrast and is always
taken in each MRI examination to determine slice position-
ing. AutoAlign Head (AAH) is a 3D FLASH sequence for
Siemens' head MRI localizer, enabling automatic slice posi-
tioning in a very short acquisition time of less than 15 s [19].
We assumed that converting AAH to MPRAGE with DL
would have less trouble compared to inter-modality trans-
formation because of the relatively similar image content.
The ability to create MPRAGE images from localizer images
would enable research and clinical use based on brain mor-
phometric analyses, which until now have been difficult for
cases without MPRAGE scans.

This study aimed to establish a DL-based model for gen-
erating MPRAGE images from MRI localizers. To ensure
sufficient quality for clinical and research use, we evaluated
the usefulness and validity of the model by software-based
voxel-based morphometry (VBM) and visual evaluation by
radiologists.
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Materials and methods
Subjects and datasets

This study used brain MR images for screening or workup
of mild cognitive impairment (MCI)/dementia and epi-
lepsy, including MPRAGE, taken at a single institution
between January 2020 and December 2022. In this study,
patient selection criteria for MCI/dementia meet the clini-
cal diagnostic criteria for probable Alzheimer's disease
(AD) dementia and MCI due to AD based on the 2011
guidelines of the National Institute on Aging and the Alz-
heimer's Association. Clinical diagnosis was performed
by board-certified neurologists. Regarding epilepsy,
patients with epilepsy diagnosed by board-certified neu-
rologists underwent an “epilepsy MRI protocol” including
MPRAGE [20]. In the other MRI protocols, MPRAGE
was not used at our institution due to MRI examination
slots. We excluded cases showing excessive motion arti-
facts or those in which the default resolution of MPRAGE
had been changed to adjust skull size. For the test data-
set, patients included in the training and validation data-
sets were excluded to avoid affecting evaluations of the
test dataset. Images taken between 2020 and 2021 were
assigned to training and validation datasets at a ratio of
9:1. All images from 2022 were used for the test dataset
because it was difficult to use datasets from other institutes
or public datasets due to the use of localizer images and
the need to increase the number of cases to verify clini-
cal utility. This retrospective study was approved by the
institutional ethics committee. All MR images had only
been taken out of clinical necessity, and the need to obtain
written informed consent was waived based on the retro-
spective nature of the work. No subjects overlapped with
previously published work.

MRI acquisition

Acquisitions were performed using 3.0-T whole-body
systems (Magnetom Skyra, Prisma, and Vida; Siemens
Healthineers, Erlangen, Germany) using 32-, 64-, and
32-channel receive-only head coils, respectively. Imag-
ing parameters were as follows. AAH (3D FLASH): TR,
3.15 ms; TE, 1.37 ms; flip angle (FA), 8°; bandwidth,
540 Hz/pixel; spatial resolution, isotropic voxels of
1.6 mm; and slices, 128. For acceleration, 24 reference
lines were acquired in the phase-encoding direction, and
generalized autocalibrating partially parallel acquisition
(GRAPPA) 3 x was used. The acquisition time was 14 s.
MPRAGE: TR, 2300 ms; TE, 4.67 ms; FA, 9°; band-
width, 130 Hz/pixel; spatial resolution, isotropic voxels
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of 0.9 mm, and slices, 208. For acceleration, 24 reference
lines were acquired in the phase-encoding direction, and
GRAPPA 2 x was used. The acquisition time was 4 min
26 s.

Deep learning model and training

We used the pix2pix method, which combines a U-Net gen-
erator with a conditional GAN [10]. Pix2pix is widely used
for image-to-image translation and has reportedly been used
for medical images [18, 21, 22]. We modified the pix2pix
code in pytorch (https://github.com/junyanz/pytorch-Cycle
GAN-and-pix2pix) [10]. Details of the model modification
and training procedure are described in the Supplementary
material. The code used in this study is available on GitHub
(https://github.com/kuponuga/aah2mprage).

Image evaluation metrics

In training, validation, and testing, we used peak signal-to-
noise ratio (PSNR, with higher values considered better),
structural similarity index measure (SSIM, with higher val-
ues considered better) [23], and Learned Perceptual Image
Patch Similarity (LPIPS, with lower values considered bet-
ter) [24] (https://github.com/richzhang/PerceptualSimilarity)
as metrics for assessing image quality. The default Alex net-
work was used in LPIPS.

Model selection

Two radiologists (A.S. and H.T., with 15 and 10 years of
experience in neuroradiology, respectively) performed
visual evaluation of generated images and determined the
best model. First, we extracted eight slices that included the
brain, reviewed the images for each condition, and excluded
those that showed inaccurate translations or apparent arti-
facts. We then chose those with superior image quality based
on visual evaluation and finally selected the best model
based on a consensus of two radiologists. For the selected
model, we looked through all the validation images to check
for any abnormalities that would cause significant problems
for evaluation. Image evaluation indices (PSNR, SSIM,
LPIPS) were also calculated to see if they differed from the
radiologists’ evaluations.

Tests

Objective image evaluation

PSNR, SSIM, and LPIPS were calculated between the origi-
nal MPRAGE and generated images from the test datasets

only for those sections containing brain parenchyma. As
with the training procedure (Supplementary material), one

radiologist (H.T.) excluded those slices not containing brain
parenchyma.

VBM

VBM analysis was performed using FreeSurfer (version
7.4.1, https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurfer
Wiki). First, image processing and segmentation were per-
formed on the original MPRAGE and on generated images
using the FreeSurfer “recon-all” command. Considering
the influence of manual correction on analysis results, we
excluded images from evaluation without manual correction
if an error was identified. Concordance of the segmenta-
tion regions of major structures (each side of the thalamus,
caudate, putamen, hippocampus, amygdala, cerebral white
matter, cerebral cortex, and lateral ventricle, third ventricle,
and fourth ventricle) was evaluated using Dice scores. These
Dice scores were calculated using the “mri_overlap” com-
mand on FreeSurfer. We also evaluated volume differences
as the absolute symmetrized percent change (ASPC). We
used the volumes provided from FreeSurfer recon-all stats.
Dice score and ASPC are defined as follows:

2|1XNnY
Dice(X,Y) = g
X+ Y]
200|X - Y
ASPC(X,Y) = M
IX]+ Y]

Visual evaluation

Three radiologists (S.Ik., S.It., and M.U., each with 7 years
of experience in neuroradiology) evaluated both MPRAGE
and generated images of the test dataset obtained in 2022.
The presence of medial temporal lobe atrophy (MTA) and
old cerebral infarction or hemorrhage was visually assessed.
The following medial temporal lobe atrophy score [25] was
used to evaluate atrophy: 0, normal; 1, widened choroid fis-
sure; 2, increased widening of the choroid fissure, widening
of the temporal horn, opening of other sulci (i.e., collateral/
fusiform sulcus); 3, pronounced loss of hippocampal vol-
ume; and 4, end-stage atrophy. Cerebrovascular lesions were
defined as those with a short diameter > 1 cm. Generated
images were evaluated first. Four weeks later, MPRAGE
images were evaluated next. Raters were not informed
which images were the generated images and which were
MPRAGE, and the order of cases was randomized. For
lesions not detected on generated images, another radiologist
(H.T.) reviewed the images. Conspicuous artifacts were also
recorded. For MTA scores, weighted Cohen kappa was cal-
culated between MPRAGE and the generated images. Quad-
ratic weighting was used to emphasize the large difference
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in scores. Statistical analysis was performed with R (ver-
sion 4.3.1, https://www.r-project.org/) on RStudio (version
2023.09.1, https://posit.co/download/rstudio-desktop/).

Results
Characteristics of the study population

A total of 384 eligible MRI examinations were performed
in 2020 and 2021, and 230 were performed in 2022. Eight
examinations were excluded from the training and valida-
tion datasets due to artifacts (n=4) and different resolu-
tion (n=4), and a total of 376 examinations were finally
included (training, n =340; validation, n=36). Thirty-seven

Brain MRI for MCl/Dementia
and Epilepsy in 2022

Brain MRI for MCl/Dementia
and Epilepsy in 2020-2021

(N=384) (N=230)
Excluded Excluded
« Artifact (N=4) * Artifact (N=1)
] + Resolution (N=4) > - Resolution (N=4)
+ Subject Overlap (N=32)
Training set || Validation set Test set
(N=340) (N=36) (N=193)

Fig.1 Inclusion and exclusion flowcharts for datasets. MCI, mild
cognitive impairment

examinations were excluded from the test datasets due to
artifacts (n = 1), different resolution (n=4), and subject over-
lap (n=32). A total of 193 examinations were included for
the test dataset (Fig. 1). Details of the patients included in
each dataset are provided in Table 1.

Training and validation

DL procedures are presented in Fig. 2. Thirty different
models were created by setting 4;, to 100, 699, 1000, 6999,
and 10,000, and 4, to 0, 100, 699, 1000, 6999, and 10,000,
where A, represents L1 loss weights and 4, represents VGG
perceptual loss weights for the evaluation function (Sup-
plementary material). The maximum number of epochs
was set to 40, empirically determined based on the learning
curve (Supplementary Fig. 1). We generated MPRAGE-
like images from the validation dataset at 10, 20, 30, and
40 epochs for each model. The two radiologists visually
evaluated the images and decided on the optimal model
(A1, 699; Ap, 699; and epochs, 30) by consensus. Sample
images used to select the optimal model are shown in Sup-
plementary Fig. 2. The mean and standard deviation (SD) of
image evaluation metrics for each model are listed in Sup-
plementary Tables 1-3. Image metrics of the final model
were as follows: PSNR, 35.1+5.04; SSIM, 0.873 +0.059;
and LPIPS, 0.044+0.017. PSNR and SSIM were ranked
76th and 71st out of 120 (4 types of epochs with 30 differ-
ent parameters), respectively, while LPIPS was ranked 12th,
relatively close to the evaluation of the radiologists. For

Table 1 Characteristics of

8 Datasets Train Validation Test
patients and datasets
Patients (female) 340 (195) 36 (20) 193 (111)
Mean age +SD 56.1+24.4 67.3+18.3 59.5+244
(range) (2-95) (15-93) 4-92)
No. of image pairs 87,040 (47,880) 9216 (5259) 49,408 (28,460)
(including brain)

Indication for study
Epilepsy 178 15 88
MCI/Dementia 162 21 105
Clinical diagnosis AD 46 7 23

VaD 9 4 8

AD+ VaD 3 0 0

DLB 8 0 9

FTLD 3 0 2

iNPH 3 0 1

Others 2 1 0

Not specified 88 9 63

MCI, mild cognitive impairment; AD, Alzheimer’s disease; VaD, vascular dementia; DLB, dementia with
Lewy bodies; FTLD, frontotemporal lobar degeneration; iNPH, idiopathic normal-pressure hydrocephalus.
Note that “No. of image pairs” represents the total number of slice pairs of MPRAGE and AAH. Only
images that included the brain were used for training and evaluated by image metrics for validation and test

datasets
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Fig.2 Deep learning proce-
dures. AAH, AutoAlign Head;
cGAN, conditional generative
adversarial network

Training

U-net Generator

Generator Feedback

Legan(G,D) + 211 L11(G) + 4,L,(G)

AAH Generated

|:|—|:|—|:| Real or Fake

Patch GAN
Discriminator

Discriminator loss
LCGAN(G- D)

cGAN Feedback

reference, we compared the original MPRAGE and original
AAH, showing image metrics of PSNR 32.1 +5.34, SSIM
0.787+0.059, and LPIPS 0.136 +0.032.

Objective image evaluation using the test dataset

Image metrics (mean + SD) between MPRAGE and the gen-
erated images were as follows: PSNR, 35.4+4.91; SSIM,
0.871 +0.058; and LPIPS, 0.045+0.017. Image metrics in
the test dataset were almost equivalent to those in the valida-
tion dataset (PSNR, 35.1; SSIM, 0.873; LPIPS, 0.044), and
no overfitting was observed. Representative images of the
test datasets are shown in Fig. 3.

VBM

On FreeSurfer, the Recon-all function ran successfully with-
out errors in both MPRAGE and generated images, so all
cases included in test datasets were included in VBM analy-
sis. Mean Dice scores of major structures volume ranged
from 0.788 (left amygdala) to 0.923 (right ventricle), with
higher values considered better. Mean ASPCs ranged from
12.00 (left pallium) to 2.23 (left ventricle), with lower values
considered better. All values for Dice scores and ASPC are
shown in Table 2. Dice score and percentage volume differ-
ences of the hippocampus from VBM were 0.834 and 6.18
for the left, and 0.840 and 5.54 for the right, respectively.

Visual evaluation

Quadratic weighted Cohen kappa values for MTA scores
between MPRAGE and generated images for each rater
were 0.84 (95% confidence interval [CI] 0.81-0.87), 0.88
(95%CI 0.81-0.87), and 0.80 (95%CI 0.72-0.88). Intra-
class correlation coefficients (ICC) (2,1) between raters

A
L1 loss
£11(6)

Perceptual loss
Ly(6)

fe s 7

AutoAlign

MPRAGE

Generated

Fig.3 Representative images from the test datasets. Left: AutoA-
lign Head (AAH), head localizer image; middle: original MPRAGE;
right: generated image. A, B Axial images. Training was performed
on axial images. On AAH and MPRAGE, images were reconstructed
from sagittal section images. C Coronal image for evaluation of
medial temporal lobe atrophy. On AAH and MPRAGE, images were
reconstructed from sagittal images. The generated image was created
as axial images. Whole-brain images for A are shown in Supplemen-
tary Fig. 3

were 0.731 (95%CI 0.599-0.813) for MPRAGE and 0.79
(95%C1 0.725-0.837) for the generated images. The break-
down of MTA scores and the number of detected cerebro-
vascular disorders are shown in Tables 3 and 4, respectively.
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Table 2 Dice score and ASPC on the VBM study
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Pallidum Hippocampus

Putamen

Caudate

Thalamus

Left Right Left Right

Right

Left

Right

Left

Right

Left

0.840 (0.068)

0.797 (0.090) 0.834 (0.067)

0.825 (0.089) 0.793 (0.086)

0.840 (0.056) 0.818 (0.074)

0.842 (0.061)

0.893

Dice Score Mean (SD) 0.893

(0.031)
6.69 (6.71)

(0.042)

Mean (SD) 6.49 (5.65)

5.54 (7.59)

11.77 (10.66) 6.18 (6.86)

12.00
(10.00)

10.02 (7.06) 8.65 (9.12)

8.88 (8.07)

772 (1.51)

ASPC

Third ventricle Fourth ventricle

Cerebral white matter Cerebral cortex Lateral ventricle

Amygdala

Right

Left

Right

Left

Right

Left

Right

Left

0.841 (0.032)
7.11 (5.56)

0.803 (0.034) 0.926 (0.033) 0.923 (0.032) 0.879 (0.029)

3.24 (2.54)

0.872 (0.022) 0.808 (0.036)

7.90 (5.06)

Dice Score Mean (SD) 0.788 (0.103) 0.834 (0.084) 0.875 (0.027)

ASPC

5.45 (4.72)

291
(2.87)

2.23(1.84)

3.00 (2.32)

7.23 (5.99)

Mean (SD) 11.62 (12.47) 8.28 (7.72)

ASPC, absolute symmetrized percent change

A difference in the number of cerebrovascular disorders
was detected between MPRAGE and generated images for
all raters. A review of cerebrovascular lesions that could
not be detected on generated images by visual evaluation
revealed “normal-looking” translations, which comple-
mented the lesion or structures other than the brain with
the normal brain structure, in seven lesions (Fig. 4A, B).
On the other hand, none of the lesions identified only in
the generated images were clearly due to artifacts from the
image conversion.

Artifacts

In addition to “normal-looking” translations, several arti-
facts were noted in generated images (Fig. 4C, D). These
were also observed in AAH and could not be eliminated by
the model. On the other hand, truncation artifacts appeared
to be adequately eliminated.

Discussion

This study established a DL-based image-to-image transla-
tion model for generating MPRAGE-like images from head
MRI localizer using image evaluation metrics and visual
examination by radiologists. No apparent overfitting was
observed in comparisons of image metrics for each data-
set. We also demonstrated the reliability and validity of our
model by VBM (FreeSurfer) and visual evaluation by radi-
ologists. Dice scores for the segmentation of main struc-
tures on FreeSurfer ranged from 0.788 (left amygdala) to
0.926 (left ventricle) (Table 2). Quadratic weighted Cohen
kappa values for the visual score of the medial temporal
lobe between generated and original images were 0.80-0.88.

In FreeSurfer analysis, mean Dice score for segmenta-
tion results between MPRAGE and generated images was
consistently above 0.8, with the exception of the pallidum
and left amygdala. Agreement for segmentation between
both types of image appeared to be excellent. Volume dif-
ferences (ASPC) varied by structure, but were about 6% for
the hippocampus. A longitudinal study revealed that patients
with MCI who progressed to AD within 3 years showed
hippocampal atrophy progressing by about 4% per year
[26]. Our model might not have been sufficiently accurate
to assess MCI patients, but was considered acceptable for
use in the diagnosis of AD. Since volume differences for the
putamen, pallidum, and amygdala were about 10%, more
accurate modeling would be required for the evaluation of
these structures.

Excellent agreement in the visual evaluation of medial
temporal lobe atrophy between the original MPRAGE and
generated images (quadratic weighted Cohen kappa val-
ues > 0.8 for all raters) suggested that visual assessment may
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Table 3. Visual evaluation Rater A Rater B Rater C
of medial temporal atrophy
(visual scale score) by three Medial temporal atrophy  Original Generated  Original Generated  Original Generated
radiologists (Visual scale score)
0 116 145 180 203 202 176
1 98 98 99 98 99 123
2 96 91 72 56 51 47
3 47 28 22 18 13 12
4 29 24 13 11 21 28
Weighted Cohen k 0.84 0.88 0.80
(95%CI) (0.81,0.87) (0.84,0.91) (0.72, 0.88)

Rating protocol for the visual scale score of medial temporal atrophy: 0, normal; 1, widened choroid fis-
sure; 2, increased widening of the choroid fissure, widening of the temporal horn, opening of other sulci
(i.e., collateral/fusiform sulcus); 3, pronounced loss of hippocampal volume; 4, end-stage atrophy. Quad-
ratic weighting was used for Cohen kappa

Table 4 Visual evaluation of cerebrovascular disease by three radiologists

Rater A Rater B Rater C

MPRAGE Generated MPRAGE Generated MPRAGE Generated
Detected lesions 27 22 32 15 30 28
Detected only on MPRAGE 11 - 17 - 9 -
Detected only on generated images - 6 - 0 - 7

be useful even when only limited sequences are taken, such
as in acute stroke examination. On the other hand, further
evaluation is needed regarding the detection of cerebrovas-
cular disease between the original MPRAGE and generated
images. Cerebrovascular disorders such as acute stroke are
usually evaluated with T2-weighted, FLAIR, and diffusion-
weighted imaging, and T1-weighted images alone as in this
case may not be appropriate as a reading setting.

As shown in Fig. 4, “normal-looking” translations are
observed in the generated images. This limits the utility of
the present model, and evaluation for brain lesions such as
cerebrovascular disorders requires careful evaluation. This
problem can occur in other image-to-image transformations
using DL [11, 15]. Revisiting this issue with more datasets
and/or future advances in DL technology is desirable.

Several limitations to this retrospective study need to
be acknowledged. First, although three different models
of MR scanner were used, this was a single-vendor, sin-
gle-center study. A multi-vendor, multi-center evaluation
would be desirable to confirm the utility of the model,
but was difficult to perform in this study because AAH
is the 3D MR localizer used specifically for Siemens MR
scanners and the availability of 3D localizer images from
other vendors is limited. We explored open databases con-
taining 3D T1-weighted images [27], but none contained
AAH as far as we know. Localizer images differ for each
vendor, so creating a model specific to each vendor would

be desirable. Second, we used only dementia and epilepsy
cases. DL relies heavily on training data. Whether similar
results can be obtained with healthy subjects or other dis-
eases, such as brain tumors, needs to be examined. Prepar-
ing more varied training data may be necessary. Third, we
determined the best model based on visual assessments
by two radiologists because one purpose of this study was
to investigate clinical usefulness. Because some models
had very similar image quality, a different model may be
selected by different raters. We consider it unlikely that
such small differences would result in significant differ-
ences in the images generated from the test data and that
the results of visual evaluation would differ greatly. Next,
the field of DL is advancing rapidly, and various networks
have been proposed. We used the pix2pix method in this
study, but other networks may be more suitable for this
purpose, and there may be points for improvement, such as
using a 3D convolutional network. Finally, the visual eval-
uation assessed cerebrovascular lesions, which are usually
evaluated with other sequences such as diffusion-weighted,
T2-weighted, and FLAIR imaging. In this study, even with
MPRAGE, variations in the detection of cerebrovascular
lesions existed between raters.

In conclusion, our DL model for generating MPRAGE-
like images from head MR localizer images had the advan-
tage of generating images in post-processing and allowing
visual evaluation of medial temporal lobe atrophy. We hope
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AutoAlign

MPRAGE Generated

Fig.4 Representative images containing artifacts from test datasets.
A MPRAGE shows an old infarction in the left frontal lobe (arrow),
whereas the generated image shows normal-appearing cortex-like
structures (arrowhead), making the infarction difficult to recognize.
B On MPRAGE, the superior sagittal sinus (SSS) and neighbor-
ing brain parenchyma can be distinguished (arrow), but the SSS is
converted to a structure mimicking brain parenchyma in the gener-
ated image (arrowhead). Note that the truncation artifact seen in the
AutoAlign Head (AAH) head localizer image has been removed from
generated images. C AAH shows a heterogeneous high-intensity arti-
fact around the right tentorium (arrow); in the generated image, this
artifact has not been removed (arrowhead). D AAH shows strong
truncation artifacts (arrow); these artifacts remain in the generated
image (arrowhead). Note that artifacts are also seen on MPRAGE due
to motion artifacts (curved arrows)

advances in DL methods will reduce erroneous conversions
in the future. In the meantime, our approach may become
helpful in clinical practice for radiologists familiar with the
characteristics of both real and generated images.
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