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Abstract
Purpose  Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, 
but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) 
images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and 
neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images 
from MRI localizers.
Materials and methods  Brain MRI examinations including MPRAGE taken at a single institution for investigation of mild 
cognitive impairment, dementia and epilepsy between January 2020 and December 2022 were included retrospectively. 
Images taken in 2020 or 2021 were assigned to training and validation datasets, and images from 2022 were used for the test 
dataset. Using the training and validation set, we determined one model using visual evaluation by radiologists with refer-
ence to image quality metrics of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and Learned 
Perceptual Image Patch Similarity (LPIPS). The test dataset was evaluated by visual assessment and quality metrics. Voxel-
based morphometric analysis was also performed, and we evaluated Dice score and volume differences between generated 
and original images of major structures were calculated as absolute symmetrized percent change.
Results  Training, validation, and test datasets comprised 340 patients (mean age, 56.1 ± 24.4 years; 195 women), 36 patients 
(67.3 ± 18.3 years, 20 women), and 193 patients (59.5 ± 24.4 years; 111 women), respectively. The test dataset showed: PSNR, 
35.4 ± 4.91; SSIM, 0.871 ± 0.058; and LPIPS 0.045 ± 0.017. No overfitting was observed. Dice scores for the segmentation 
of main structures ranged from 0.788 (left amygdala) to 0.926 (left ventricle). Quadratic weighted Cohen kappa values of 
visual score for medial temporal lobe between original and generated images were 0.80–0.88.
Conclusion  Images generated using our DL-based model can be used for post-processing and visual evaluation of medial 
temporal lobe atrophy.

Keywords  Magnetization prepared rapid gradient echo · Voxel-based morphometric analysis · Generative adversarial 
network · Machine learning

Introduction

Magnetization prepared rapid gradient echo (MPRAGE) 
is a high-resolution three-dimensional (3D) T1-weighted 
imaging with inversion recovery (IR) pre-pulse [1], offering 
excellent T1-weighted contrast and good visualization of the 
cortico-medullary boundaries of the brain. With MPRAGE, 
differences in image quality between different machines are 
relatively small [2]. For this reason, MPRAGE is widely 
used for research into brain morphology analysis and the 
diagnosis of dementia and neurodegenerative diseases [3–6]. 
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However, T1-weighted images, including MPRAGE, are 
not a priority in many examinations, such as evaluations for 
cerebrovascular disorders [7, 8]. Data acquisition is there-
fore often omitted due to practical limitations on exami-
nation time. In clinical practice, where contrast-enhanced 
T1-weighted imaging is performed, 3D turbo spin echo 
sequences and 3D gradient echo sequences are preferred 
instead of MPRAGE for the better contrast enhancement 
or shorter acquisition time [7–9]. Retrospective analysis of 
brain morphology with MPRAGE imaging is therefore often 
difficult.

Advances in deep learning (DL) have enabled the genera-
tion of various images or the conversion of images from one 
domain to another using the idea of the generative adver-
sarial network (GAN) [10–12]. DL is also now being used 
for image transformation of medical images [13]. Studies 
have examined transformation between different MRI con-
trasts or between different imaging modalities [14–17]. For 
analyses of brain morphology, a DL-based method has also 
been reported using MR images taken in clinical practice, 
such as two-dimensional FLAIR, instead of high-resolution 
T1-weighted images [18]. Although the generation of similar 
images using DL-based image transformation has become 
technically feasible, radiological validation of the generated 
images is not yet sufficient, representing a significant barrier 
to clinical application. In DL-based image conversion, the 
relationship between two domains is captured by the genera-
tor network. While necessary information may be missing 
from the source images or model, the network makes up for 
such information in the process of image conversion without 
consideration of radiological correctness. In other words, 
DL-based image transformations, such as inter-modality 
transformations, rely heavily on trained networks. These 
processes are thus considered to carry a high risk of false 
conversion and to require careful evaluation.

The MRI localizer has T1-weighted contrast and is always 
taken in each MRI examination to determine slice position-
ing. AutoAlign Head (AAH) is a 3D FLASH sequence for 
Siemens' head MRI localizer, enabling automatic slice posi-
tioning in a very short acquisition time of less than 15 s [19]. 
We assumed that converting AAH to MPRAGE with DL 
would have less trouble compared to inter-modality trans-
formation because of the relatively similar image content. 
The ability to create MPRAGE images from localizer images 
would enable research and clinical use based on brain mor-
phometric analyses, which until now have been difficult for 
cases without MPRAGE scans.

This study aimed to establish a DL-based model for gen-
erating MPRAGE images from MRI localizers. To ensure 
sufficient quality for clinical and research use, we evaluated 
the usefulness and validity of the model by software-based 
voxel-based morphometry (VBM) and visual evaluation by 
radiologists.

Materials and methods

Subjects and datasets

This study used brain MR images for screening or workup 
of mild cognitive impairment (MCI)/dementia and epi-
lepsy, including MPRAGE, taken at a single institution 
between January 2020 and December 2022. In this study, 
patient selection criteria for MCI/dementia meet the clini-
cal diagnostic criteria for probable Alzheimer's disease 
(AD) dementia and MCI due to AD based on the 2011 
guidelines of the National Institute on Aging and the Alz-
heimer's Association. Clinical diagnosis was performed 
by board-certified neurologists. Regarding epilepsy, 
patients with epilepsy diagnosed by board-certified neu-
rologists underwent an “epilepsy MRI protocol” including 
MPRAGE [20]. In the other MRI protocols, MPRAGE 
was not used at our institution due to MRI examination 
slots. We excluded cases showing excessive motion arti-
facts or those in which the default resolution of MPRAGE 
had been changed to adjust skull size. For the test data-
set, patients included in the training and validation data-
sets were excluded to avoid affecting evaluations of the 
test dataset. Images taken between 2020 and 2021 were 
assigned to training and validation datasets at a ratio of 
9:1. All images from 2022 were used for the test dataset 
because it was difficult to use datasets from other institutes 
or public datasets due to the use of localizer images and 
the need to increase the number of cases to verify clini-
cal utility. This retrospective study was approved by the 
institutional ethics committee. All MR images had only 
been taken out of clinical necessity, and the need to obtain 
written informed consent was waived based on the retro-
spective nature of the work. No subjects overlapped with 
previously published work.

MRI acquisition

Acquisitions were performed using 3.0-T whole-body 
systems (Magnetom Skyra, Prisma, and Vida; Siemens 
Healthineers, Erlangen, Germany) using 32-, 64-, and 
32-channel receive-only head coils, respectively. Imag-
ing parameters were as follows. AAH (3D FLASH): TR, 
3.15 ms; TE, 1.37 ms; flip angle (FA), 8°; bandwidth, 
540  Hz/pixel; spatial resolution, isotropic voxels of 
1.6 mm; and slices, 128. For acceleration, 24 reference 
lines were acquired in the phase-encoding direction, and 
generalized autocalibrating partially parallel acquisition 
(GRAPPA) 3 × was used. The acquisition time was 14 s. 
MPRAGE: TR, 2300 ms; TE, 4.67 ms; FA, 9°; band-
width, 130 Hz/pixel; spatial resolution, isotropic voxels 
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of 0.9 mm, and slices, 208. For acceleration, 24 reference 
lines were acquired in the phase-encoding direction, and 
GRAPPA 2 × was used. The acquisition time was 4 min 
26 s.

Deep learning model and training

We used the pix2pix method, which combines a U-Net gen-
erator with a conditional GAN [10]. Pix2pix is widely used 
for image-to-image translation and has reportedly been used 
for medical images [18, 21, 22]. We modified the pix2pix 
code in pytorch (https://​github.​com/​junya​nz/​pytor​ch-​Cycle​
GAN-​and-​pix2p​ix) [10]. Details of the model modification 
and training procedure are described in the Supplementary 
material. The code used in this study is available on GitHub 
(https://​github.​com/​kupon​uga/​aah2m​prage).

Image evaluation metrics

In training, validation, and testing, we used peak signal-to-
noise ratio (PSNR, with higher values considered better), 
structural similarity index measure (SSIM, with higher val-
ues considered better) [23], and Learned Perceptual Image 
Patch Similarity (LPIPS, with lower values considered bet-
ter) [24] (https://​github.​com/​richz​hang/​Perce​ptual​Simil​arity) 
as metrics for assessing image quality. The default Alex net-
work was used in LPIPS.

Model selection

Two radiologists (A.S. and H.T., with 15 and 10 years of 
experience in neuroradiology, respectively) performed 
visual evaluation of generated images and determined the 
best model. First, we extracted eight slices that included the 
brain, reviewed the images for each condition, and excluded 
those that showed inaccurate translations or apparent arti-
facts. We then chose those with superior image quality based 
on visual evaluation and finally selected the best model 
based on a consensus of two radiologists. For the selected 
model, we looked through all the validation images to check 
for any abnormalities that would cause significant problems 
for evaluation. Image evaluation indices (PSNR, SSIM, 
LPIPS) were also calculated to see if they differed from the 
radiologists’ evaluations.

Tests

Objective image evaluation

PSNR, SSIM, and LPIPS were calculated between the origi-
nal MPRAGE and generated images from the test datasets 
only for those sections containing brain parenchyma. As 
with the training procedure (Supplementary material), one 

radiologist (H.T.) excluded those slices not containing brain 
parenchyma.

VBM

VBM analysis was performed using FreeSurfer (version 
7.4.1, https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki/​FreeS​urfer​
Wiki). First, image processing and segmentation were per-
formed on the original MPRAGE and on generated images 
using the FreeSurfer “recon-all” command. Considering 
the influence of manual correction on analysis results, we 
excluded images from evaluation without manual correction 
if an error was identified. Concordance of the segmenta-
tion regions of major structures (each side of the thalamus, 
caudate, putamen, hippocampus, amygdala, cerebral white 
matter, cerebral cortex, and lateral ventricle, third ventricle, 
and fourth ventricle) was evaluated using Dice scores. These 
Dice scores were calculated using the “mri_overlap” com-
mand on FreeSurfer. We also evaluated volume differences 
as the absolute symmetrized percent change (ASPC). We 
used the volumes provided from FreeSurfer recon-all stats. 
Dice score and ASPC are defined as follows:

Visual evaluation

Three radiologists (S.Ik., S.It., and M.U., each with 7 years 
of experience in neuroradiology) evaluated both MPRAGE 
and generated images of the test dataset obtained in 2022. 
The presence of medial temporal lobe atrophy (MTA) and 
old cerebral infarction or hemorrhage was visually assessed. 
The following medial temporal lobe atrophy score [25] was 
used to evaluate atrophy: 0, normal; 1, widened choroid fis-
sure; 2, increased widening of the choroid fissure, widening 
of the temporal horn, opening of other sulci (i.e., collateral/
fusiform sulcus); 3, pronounced loss of hippocampal vol-
ume; and 4, end-stage atrophy. Cerebrovascular lesions were 
defined as those with a short diameter ≥ 1 cm. Generated 
images were evaluated first. Four weeks later, MPRAGE 
images were evaluated next. Raters were not informed 
which images were the generated images and which were 
MPRAGE, and the order of cases was randomized. For 
lesions not detected on generated images, another radiologist 
(H.T.) reviewed the images. Conspicuous artifacts were also 
recorded. For MTA scores, weighted Cohen kappa was cal-
culated between MPRAGE and the generated images. Quad-
ratic weighting was used to emphasize the large difference 

Dice(X, Y) =
2|X ∩ Y|

|X| + |Y|

ASPC(X, Y) =
200|X − Y|

|X| + |Y|

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/kuponuga/aah2mprage
https://github.com/richzhang/PerceptualSimilarity
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
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in scores. Statistical analysis was performed with R (ver-
sion 4.3.1, https://​www.r-​proje​ct.​org/) on RStudio (version 
2023.09.1, https://​posit.​co/​downl​oad/​rstud​io-​deskt​op/).

Results

Characteristics of the study population

A total of 384 eligible MRI examinations were performed 
in 2020 and 2021, and 230 were performed in 2022. Eight 
examinations were excluded from the training and valida-
tion datasets due to artifacts (n = 4) and different resolu-
tion (n = 4), and a total of 376 examinations were finally 
included (training, n = 340; validation, n = 36). Thirty-seven 

examinations were excluded from the test datasets due to 
artifacts (n = 1), different resolution (n = 4), and subject over-
lap (n = 32). A total of 193 examinations were included for 
the test dataset (Fig. 1). Details of the patients included in 
each dataset are provided in Table 1.

Training and validation

DL procedures are presented in Fig. 2. Thirty different 
models were created by setting �

L1 to 100, 699, 1000, 6999, 
and 10,000, and �

P
 to 0, 100, 699, 1000, 6999, and 10,000, 

where �
L1 represents L1 loss weights and �

P
 represents VGG 

perceptual loss weights for the evaluation function (Sup-
plementary material). The maximum number of epochs 
was set to 40, empirically determined based on the learning 
curve (Supplementary Fig. 1). We generated MPRAGE-
like images from the validation dataset at 10, 20, 30, and 
40 epochs for each model. The two radiologists visually 
evaluated the images and decided on the optimal model 
( �

L1 , 699; �
P
 , 699; and epochs, 30) by consensus. Sample 

images used to select the optimal model are shown in Sup-
plementary Fig. 2. The mean and standard deviation (SD) of 
image evaluation metrics for each model are listed in Sup-
plementary Tables 1–3. Image metrics of the final model 
were as follows: PSNR, 35.1 ± 5.04; SSIM, 0.873 ± 0.059; 
and LPIPS, 0.044 ± 0.017. PSNR and SSIM were ranked 
76th and 71st out of 120 (4 types of epochs with 30 differ-
ent parameters), respectively, while LPIPS was ranked 12th, 
relatively close to the evaluation of the radiologists. For 

Fig. 1   Inclusion and exclusion flowcharts for datasets. MCI, mild 
cognitive impairment

Table 1   Characteristics of 
patients and datasets

MCI, mild cognitive impairment; AD, Alzheimer’s disease; VaD, vascular dementia; DLB, dementia with 
Lewy bodies; FTLD, frontotemporal lobar degeneration; iNPH, idiopathic normal-pressure hydrocephalus. 
Note that “No. of image pairs” represents the total number of slice pairs of MPRAGE and AAH. Only 
images that included the brain were used for training and evaluated by image metrics for validation and test 
datasets

Datasets Train Validation Test

Patients (female) 340 (195) 36 (20) 193 (111)
Mean age ± SD
(range)

56.1 ± 24.4
(2–95)

67.3 ± 18.3
(15–93)

59.5 ± 24.4
(4–92)

No. of image pairs 
(including brain)

87,040 (47,880) 9216 (5259) 49,408 (28,460)

Indication for study
Epilepsy 178 15 88
MCI/Dementia 162 21 105
Clinical diagnosis AD 46 7 23

VaD 9 4 8
AD + VaD 3 0 0
DLB 8 0 9
FTLD 3 0 2
iNPH 3 0 1
Others 2 1 0
Not specified 88 9 63

https://www.r-project.org/
https://posit.co/download/rstudio-desktop/
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reference, we compared the original MPRAGE and original 
AAH, showing image metrics of PSNR 32.1 ± 5.34, SSIM 
0.787 ± 0.059, and LPIPS 0.136 ± 0.032.

Objective image evaluation using the test dataset

Image metrics (mean ± SD) between MPRAGE and the gen-
erated images were as follows: PSNR, 35.4 ± 4.91; SSIM, 
0.871 ± 0.058; and LPIPS, 0.045 ± 0.017. Image metrics in 
the test dataset were almost equivalent to those in the valida-
tion dataset (PSNR, 35.1; SSIM, 0.873; LPIPS, 0.044), and 
no overfitting was observed. Representative images of the 
test datasets are shown in Fig. 3.

VBM

On FreeSurfer, the Recon-all function ran successfully with-
out errors in both MPRAGE and generated images, so all 
cases included in test datasets were included in VBM analy-
sis. Mean Dice scores of major structures volume ranged 
from 0.788 (left amygdala) to 0.923 (right ventricle), with 
higher values considered better. Mean ASPCs ranged from 
12.00 (left pallium) to 2.23 (left ventricle), with lower values 
considered better. All values for Dice scores and ASPC are 
shown in Table 2. Dice score and percentage volume differ-
ences of the hippocampus from VBM were 0.834 and 6.18 
for the left, and 0.840 and 5.54 for the right, respectively.

Visual evaluation

Quadratic weighted Cohen kappa values for MTA scores 
between MPRAGE and generated images for each rater 
were 0.84 (95% confidence interval [CI] 0.81–0.87), 0.88 
(95%CI 0.81–0.87), and 0.80 (95%CI 0.72–0.88). Intra-
class correlation coefficients (ICC) (2,1) between raters 

were 0.731 (95%CI 0.599–0.813) for MPRAGE and 0.79 
(95%CI 0.725–0.837) for the generated images. The break-
down of MTA scores and the number of detected cerebro-
vascular disorders are shown in Tables 3 and 4, respectively. 

Fig. 2   Deep learning proce-
dures. AAH, AutoAlign Head; 
cGAN, conditional generative 
adversarial network

Fig. 3   Representative images from the test datasets. Left: AutoA-
lign Head (AAH), head localizer image; middle: original MPRAGE; 
right: generated image. A, B Axial images. Training was performed 
on axial images. On AAH and MPRAGE, images were reconstructed 
from sagittal section images. C Coronal image for evaluation of 
medial temporal lobe atrophy. On AAH and MPRAGE, images were 
reconstructed from sagittal images. The generated image was created 
as axial images. Whole-brain images for A are shown in Supplemen-
tary Fig. 3
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A difference in the number of cerebrovascular disorders 
was detected between MPRAGE and generated images for 
all raters. A review of cerebrovascular lesions that could 
not be detected on generated images by visual evaluation 
revealed “normal-looking” translations, which comple-
mented the lesion or structures other than the brain with 
the normal brain structure, in seven lesions (Fig. 4A, B). 
On the other hand, none of the lesions identified only in 
the generated images were clearly due to artifacts from the 
image conversion.

Artifacts

In addition to “normal-looking” translations, several arti-
facts were noted in generated images (Fig. 4C, D). These 
were also observed in AAH and could not be eliminated by 
the model. On the other hand, truncation artifacts appeared 
to be adequately eliminated.

Discussion

This study established a DL-based image-to-image transla-
tion model for generating MPRAGE-like images from head 
MRI localizer using image evaluation metrics and visual 
examination by radiologists. No apparent overfitting was 
observed in comparisons of image metrics for each data-
set. We also demonstrated the reliability and validity of our 
model by VBM (FreeSurfer) and visual evaluation by radi-
ologists. Dice scores for the segmentation of main struc-
tures on FreeSurfer ranged from 0.788 (left amygdala) to 
0.926 (left ventricle) (Table 2). Quadratic weighted Cohen 
kappa values for the visual score of the medial temporal 
lobe between generated and original images were 0.80–0.88.

In FreeSurfer analysis, mean Dice score for segmenta-
tion results between MPRAGE and generated images was 
consistently above 0.8, with the exception of the pallidum 
and left amygdala. Agreement for segmentation between 
both types of image appeared to be excellent. Volume dif-
ferences (ASPC) varied by structure, but were about 6% for 
the hippocampus. A longitudinal study revealed that patients 
with MCI who progressed to AD within 3 years showed 
hippocampal atrophy progressing by about 4% per year 
[26]. Our model might not have been sufficiently accurate 
to assess MCI patients, but was considered acceptable for 
use in the diagnosis of AD. Since volume differences for the 
putamen, pallidum, and amygdala were about 10%, more 
accurate modeling would be required for the evaluation of 
these structures.

Excellent agreement in the visual evaluation of medial 
temporal lobe atrophy between the original MPRAGE and 
generated images (quadratic weighted Cohen kappa val-
ues > 0.8 for all raters) suggested that visual assessment may Ta
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be useful even when only limited sequences are taken, such 
as in acute stroke examination. On the other hand, further 
evaluation is needed regarding the detection of cerebrovas-
cular disease between the original MPRAGE and generated 
images. Cerebrovascular disorders such as acute stroke are 
usually evaluated with T2-weighted, FLAIR, and diffusion-
weighted imaging, and T1-weighted images alone as in this 
case may not be appropriate as a reading setting.

As shown in Fig. 4, “normal-looking” translations are 
observed in the generated images. This limits the utility of 
the present model, and evaluation for brain lesions such as 
cerebrovascular disorders requires careful evaluation. This 
problem can occur in other image-to-image transformations 
using DL [11, 15]. Revisiting this issue with more datasets 
and/or future advances in DL technology is desirable.

Several limitations to this retrospective study need to 
be acknowledged. First, although three different models 
of MR scanner were used, this was a single-vendor, sin-
gle-center study. A multi-vendor, multi-center evaluation 
would be desirable to confirm the utility of the model, 
but was difficult to perform in this study because AAH 
is the 3D MR localizer used specifically for Siemens MR 
scanners and the availability of 3D localizer images from 
other vendors is limited. We explored open databases con-
taining 3D T1-weighted images [27], but none contained 
AAH as far as we know. Localizer images differ for each 
vendor, so creating a model specific to each vendor would 

be desirable. Second, we used only dementia and epilepsy 
cases. DL relies heavily on training data. Whether similar 
results can be obtained with healthy subjects or other dis-
eases, such as brain tumors, needs to be examined. Prepar-
ing more varied training data may be necessary. Third, we 
determined the best model based on visual assessments 
by two radiologists because one purpose of this study was 
to investigate clinical usefulness. Because some models 
had very similar image quality, a different model may be 
selected by different raters. We consider it unlikely that 
such small differences would result in significant differ-
ences in the images generated from the test data and that 
the results of visual evaluation would differ greatly. Next, 
the field of DL is advancing rapidly, and various networks 
have been proposed. We used the pix2pix method in this 
study, but other networks may be more suitable for this 
purpose, and there may be points for improvement, such as 
using a 3D convolutional network. Finally, the visual eval-
uation assessed cerebrovascular lesions, which are usually 
evaluated with other sequences such as diffusion-weighted, 
T2-weighted, and FLAIR imaging. In this study, even with 
MPRAGE, variations in the detection of cerebrovascular 
lesions existed between raters.

In conclusion, our DL model for generating MPRAGE-
like images from head MR localizer images had the advan-
tage of generating images in post-processing and allowing 
visual evaluation of medial temporal lobe atrophy. We hope 

Table 3   Visual evaluation 
of medial temporal atrophy 
(visual scale score) by three 
radiologists

Rating protocol for the visual scale score of medial temporal atrophy: 0, normal; 1, widened choroid fis-
sure; 2, increased widening of the choroid fissure, widening of the temporal horn, opening of other sulci 
(i.e., collateral/fusiform sulcus); 3, pronounced loss of hippocampal volume; 4, end-stage atrophy. Quad-
ratic weighting was used for Cohen kappa

Rater A Rater B Rater C

Medial temporal atrophy
(Visual scale score)

Original Generated Original Generated Original Generated

0 116 145 180 203 202 176
1 98 98 99 98 99 123
2 96 91 72 56 51 47
3 47 28 22 18 13 12
4 29 24 13 11 21 28
Weighted Cohen κ
(95%CI)

0.84
(0.81, 0.87)

0.88
(0.84, 0.91)

0.80
(0.72, 0.88)

Table 4   Visual evaluation of cerebrovascular disease by three radiologists

Rater A Rater B Rater C

MPRAGE Generated MPRAGE Generated MPRAGE Generated

Detected lesions 27 22 32 15 30 28
Detected only on MPRAGE 11 – 17 – 9 –
Detected only on generated images – 6 – 0 – 7



768	 Japanese Journal of Radiology (2025) 43:761–769

advances in DL methods will reduce erroneous conversions 
in the future. In the meantime, our approach may become 
helpful in clinical practice for radiologists familiar with the 
characteristics of both real and generated images.
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