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Abstract

Objective High-grade serous carcinoma (HGSC) is the most common ovarian cancer subtype, and its differentiation from
others is crucial for treatment. This study aimed to evaluate parameters derived from multi—b-value diffusion-weighted
imaging (DWI), including apparent diffusion coefficient (ADC), and metrics based on intravoxel incoherent motion (IVIM)
and diffusion kurtosis imaging (DKI), for differentiating HGSC from other ovarian cancers.

Methods We retrospectively analysed patients with primary epithelial ovarian cancer who underwent preoperative MRI
including multi-b-value DWI. From the solid tissues of the tumours, diffusion parameters were derived from the multi—b-value
DWI data using different models: ADC using a mono-exponential model; the true diffusion coefficient (Di), pseudo-diffusion
coefficient (D*), and perfusion fraction (f) using the IVIM model; and kurtosis (K) using the DKI model.

Results This study included 56 patients with different histological cancer subtypes (mean age, 60 years; range, 24—87 years).
The mean values of HGSC compared to the other cancers showed lower ADC (0.58 +0.21x 107> mm?s vs. 0.76 +0.18 x 1073
mm?/s, p<0.001), lower Di (0.37 +£0.09 X 10™> mm?*s vs. 0.42+0.15x 10~ mm?s, p=0.201), and lower f (35.79 + 11.48%
vs. 48.01 +17.21%, p=0.003), with a higher K (1.06+0.25 vs. 0.84 +0.20, p=0.341). Among these parameters, ADC
showed the highest diagnostic performance in differentiating HGSC from others, with an area under the receiver operat-
ing characteristic curve of 0.79. These trends were particularly pronounced between HGSC and clear cell carcinoma, with
significant differences in all parameters except D*. Additionally, K .., Was the only parameter that showed a significant
difference between HGSC and endometrioid carcinoma.

Conclusion Multi-b-value DWI-derived parameters, particularly ADC, may aid in the non-invasive preoperative differentia-
tion of HGSC from other ovarian cancers.

Secondary Abstract Multi—b-value DWI-derived parameters, especially ADC, demonstrated utility in differentiating high-
grade serous carcinoma (HGSC) from other ovarian cancers, highlighting their potential in non-invasive preoperative tumor
characterization.
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Introduction

High-grade serous carcinoma (HGSC) is the most common
subtype of ovarian cancer and accounts for the majority of
deaths due to gynaecological malignancies. Most cases are
diagnosed at advanced stages, with the median 5-year sur-
vival rate ranging from 15 to 55% depending on the stage
and extent of tumour debulking [1]. HGSC and endome-
trioid carcinoma (EC) typically respond well to platinum-
based chemotherapy, whereas clear cell carcinoma (CCC),
mucinous carcinoma (MC), and low-grade serous carcinoma
(LGSC) are generally more resistant. Moreover, homologous
recombination-deficient (HRD)—a key predictor of response
to poly ADP-ribose polymerase inhibitors (PARPi)—tends
to be more prevalent in HGSC (27-69%)[2, 3] than in CCC
(2.3-26%)|[2, 4] or MC (0-29%)[2, 5], though there is sub-
stantial overlap with EC (24-38%)[2]. Given the similari-
ties in and chemosensitivity and HRD prevalence between
HGSC and EC, the clinical value of differentiating these
two subtypes may be limited. Therefore, histological sub-
typing—particularly distinguishing HGSC from other sub-
types, especially non-EC types such as CCC and MC—plays
a critical role in guiding treatment decisions, as it reflects
substantial differences in chemosensitivity and HRD preva-
lence. Currently, histopathological diagnosis relies on surgi-
cal specimens or biopsies, invasive procedures that may not
always be feasible due to the patient’s condition or tumour
location. Non-invasive imaging techniques, especially MRI,
play an important role in characterising ovarian tumours and
predicting histological subtypes [6-9]. However, conven-
tional MRI sometimes shows overlapping imaging features,
making it difficult to differentiate HGSC from other epithe-
lial ovarian cancer subtypes.

Parameters derived from intravoxel incoherent motion
(IVIM) [10] and diffusion kurtosis imaging (DKI) [11],
both calculated from multi—b-value diffusion-weighted
imaging (DWI), offer complementary information: IVIM
provides estimates of perfusion-related and true molecu-
lar diffusion, while DKI characterizes microstructural het-
erogeneity and complexity. These additional biomarkers
may better reflect the tumour microenvironment and tissue
architecture, potentially aiding in the non-invasive differ-
entiation of HGSC from other subtypes. However, to date,
no studies have simultaneously evaluated IVIM and DKI
parameters in ovarian cancer.

Given the clinical importance of accurate histological
diagnosis and the limitations of current diagnostic modali-
ties, this study aimed to investigate the utility of multi-b-
value DWI-derived parameters, in distinguishing HGSC
from other epithelial ovarian cancers, which could lay the
groundwork for a more precise preoperative diagnosis and
personalised treatment strategies for ovarian cancer.

Materials and methods
Patients

Our Institutional Review Board (approval number: R06-203)
approved the protocol for this retrospective study, waiving the
requirement for written informed consent because of the ret-
rospective nature of the study.

The inclusion criteria were as follows: a) 58 consecutive
patients with primary ovarian cancer who underwent preopera-
tive MRI, including multi-b-value DWI, between January 2022
and June 2024, and b) histological subtypes confirmed via sur-
gical removal and pathological examination. The patients were
selected from a Radiology Information System. The exclu-
sion criteria were as follows: c) presence of mixed histological
types, resulting in the exclusion of two cases. A flowchart of
the patient selection process is shown in Fig. 1.

MRI acquisition

MRIs were acquired using 3 T scanners (Ingenia®, Philips
Medical Systems, Amsterdam, Netherlands), and hyoscine
butylbromide (20 mg; Buscopan®; Sanofi, France) was
injected intramuscularly to all patients immediately prior to
the examination, to reduce motion artefacts caused by bowel
peristalsis. MRI protocol included T2-weighted imaging
(T2WI), T1-weighted imaging (T1WI), and contrast-enhanced
fat-saturated TIWI (CE-T1WI) using 5 mmol gadopentetate
dimeglumine (Gadovist® 1.0 M; Bayer, Wuppertal, Germany)
diluted with saline. DWI with six b-values (0, 50, 100, 1000,
1500, and 2000s/mm?) were acquired using a free-breathing
single-shot echo-planar imaging sequence to enable sub-
sequent IVIM and DKI model fitting. The imaging param-
eters were as follows: TR/TE =5000/80 ms; flip angle =90°;
slice thickness =4.0 mm; interslice gap=0 mm; field of
view =28 X 28 cm; matrix size =144 X 144; parallel imaging
factor =2; number of signal averages = 1. The total acquisition
time was 5 min and 45 s.

Clinical and pathological findings

Clinicopathological findings, including age and histological
diagnosis, were obtained from the hospital’s electronic medi-
cal records. Histological diagnosis was based on the World
Health Organization (WHO) 2020 classification, and border-
line tumours were excluded.

Multi-b-value DWI-derived parameters
The images in the present study were reviewed by three

radiologists with 16, 7, and 4 years of post-certification
experience specialising in pelvic MRI. They were blinded
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Fig. 1 A flowchart for the
patient selection process. CCC
clear cell carcinoma, DKI dif-

Patients with primary ovarian cancer who underwent preoperative MRI,
including IVIM-DKI, between January 2022 and June 2024 (n=58)

fusion kurtosis imaging, EC
endometrioid carcinoma, HGSC
high-grade serous carcinoma,
IVIM intravoxel incoherent
motion, MC mucinous carci-
noma

— | Tumours mixed with other components (n =2) |

Ovarian cancer (n=56) |

| HGSC (n=29) | | CCC (n=14) | |

ECo-1) || w™Mco=2) |

to each patient’s clinical and pathological findings and
independently reviewed the images using the Intellispace
Portal V12.1.5 (Philips Medical Systems, Amsterdam,
Netherlands).

The region of interest (ROI) was manually set on the
solid tissue following the Ovarian Adnexal Reporting Data
System MRI [12], with priority given to areas showing
high signal on DWI and the lowest values on the apparent
diffusion coefficient (ADC) map, excluding haemorrhagic
or necrotic regions based on T2WI and CE-T1WI. Rela-
tively small ROIs were set according to a previous state-
ment on uterine sarcomas [13]. The ROIs on the ADC map
were transferred to the IVIM and DKI parametric maps.
ADC was calculated using the mono-exponential model.
From the IVIM model, we derived the true diffusion coef-
ficient (Di), the pseudo-diffusion coefficient (D*), and the
perfusion fraction (f). Kurtosis (K) was obtained from the
DKI model.

The ADC is calculated using the following equation:
S(b)/Sy=e"APC; using 6 b-values of 0, 50, 100, 1000, 1500
and 2,000 s/mm”.

The IVIM model is based on a biexponential func-
tion and is calculated using the following equation: S(b)/
SO=f~e_b'D*+ (1-f) -e7®Pi [10], where Di represents the
pure diffusion of water molecules. In contrast, D* and f
are associated with microcapillary perfusion effects. These
perfusion effects may attenuate the signal at low b values
(b<200 s/mmz). However, at high b-values, the contribution
of perfusion-related effects became negligible, allowing the
true diffusion component to be detected.

Similarly, the DKI model is derived from a bi-exponen-
tial diffusion framework and is expressed as follows: In
(S(b)/Sy)= —b - D, +b*D,>K/6 [11], where D, represents
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diffusion coefficient derived from the kurtosis model (not
used as an outcome parameter in this study).

To ensure the reliability of diffusion parameter estima-
tion, signal to noise ratio (SNR) was evaluated for each
b-value image. SNR was calculated using a standard
method (mean signal in ROI / standard deviation (SD) of
background noise).

Statistical analysis

The means and SDs were calculated for all quantitative
data, including age and multi-b-value DWI—derived
parameters. These quantitative parameters were com-
pared to differentiate HGSC from the others using the
Mann—Whitney U test, and each histological subtype was
assessed using the Kruskal-Wallis test, with multiple com-
parisons corrected using the Dunn—Bonferroni method.

Spearman’s correlation coefficient was used to deter-
mine the correlation between the parameters. Independent
risk factors were identified using binary logistic regression
to construct a risk-prediction model for parameters that
could significantly distinguish HGSC from other cancers.
Model discrimination and calibration were evaluated using
the Hosmer—-Lemeshow test.

Additionally, in the receiver operating characteristic
(ROC) curve analysis, the area under the receiver oper-
ating characteristic curve (AUC) and cutoff values were
determined for parameters that could significantly distin-
guish HGSC from other cancers.

The intraclass correlation coefficient (ICC) was used to
assess interobserver reliability.
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All statistical analyses were performed using SPSS soft-
ware (SPSS Statistics 29.0; IBM, New York, NY, USA), and
statistical significance was set at p <0.05.

Results

The present study included 56 patients with various his-
tological cancer subtypes (mean age, 60 years; range,
24-87 years). Table 1 presents patient characteristics.
Table 2 presents the multi—b-value DWI-derived param-
eters, for HGSC and other cancers. The following param-
eters significantly differed between HGSC and other can-
cers: ADC Mean® ADC Median> f Mean» f Median» and K Median*
These significant variables were subsequently included
as independent variables in logistic regression analysis.
The included variables showed a correlation coefficient of
r<0.80, indicating a lack of multicollinearity. Multivariate
analysis identified age and ADC ,.,, as statistically sig-
nificant predictors (p < 0.05) for distinguishing HGSC from
other ovarian cancers. The model’s goodness-of-fit was

assessed using the Hosmer—-Lemeshow test, confirming
adequate calibration. The final model achieved an overall
predictive accuracy of 82.1%. For the ADC .,,, the cut-off
was 0.64 with an AUC of 0.79; for the ADC y.4ian- the cut-
off was 0.65, with an AUC of 0.79. For f ,.,,,, the cut-off was
44.68 with an AUC of 0.73; for f ;. 4ian the cut-off was 44.00
with an AUC of 0.71. For K ;e gian the cut-off was 0.89, with
an AUC of 0.71. In Fig. 2, a comparison of the AUCs of the
multi-b-value DWI-derived parameters are shown.

Table 3 shows the multi—b-value DWI-derived param-
eters for each histological subtype. In comparing histological
subtypes, HGSC showed significantly lower ADC y,.,, ADC
Median» Di Mean® Di Median> f Mean> and f Median and signiﬁcantly
higher K .., and K y.4i.n than CCC. Additionally, HGSC
had a significantly higher K .., than EC, whereas EC had
a significantly lower ADC ,;.,, and ADC y.4i.n, than CCC.
Figures 3, 4, and 5 show MR images and IVIM-DKI analysis
results for HGSC, CCC, and EC, respectively.

The average ROI size was 38 mm?> (SD, 27 mmz), with a
minimum of 9 mm?. In all cases, the mean SNR exceeded 9
across all b-values, ensuring reliable parameter fitting.

Table 1 Patient characteristics

Pathology Number of Mean age Standard deviation ~Age range
cases of age
High-grade serous carcinoma 29 66 11 47-87
Clear cell carcinoma 14 53 13 34-72
Endometrioid carcinoma 11 56 18 30-79
Mucinous carcinoma 2 35 11 24-45
Table 2 Multi—b-value diffusion-weighted imaging—derived parameters for high-grade serous carcinoma and other ovarian cancers
Parameter HGSC (n=29) The others (n=27) P cut-off AUC Sensitivity Specificity
DWI ADC (1073 mm?/s)
Mean 0.58 (0.12) 0.76 (0.18) <0.001* 0.64 0.79 0.76 0.74
Median 0.58 (0.13) 0.77 (0.18) <0.001* 0.65 0.79 0.79 0.78
IVIM Di (107> mm?/s)
Mean 0.37 (0.09) 0.42 (0.15) 0.201 0.60
Median 0.19 (0.11) 0.25 (0.15) 0.108 0.63
D* (1073 mm?%/s)
Mean 7.05 (4.12) 5.57 (3.30) 0.176 0.61
Median 5.67 (4.02) 5.36 (3.79) 0.964 0.53
f (%)
Mean 35.79 (11.48) 48.01 (17.21) 0.003*  44.68 0.73 0.83 0.59
Median 35.27 (16.70) 47.68 (17.00) 0.007*  44.00 0.71 0.79 0.59
DKI K
Mean 1.06 (0.25) 0.84 (0.20) 0.341 0.57
Median 1.08 (0.23) 0.87 (0.19) 0.016* 0.89 0.71 0.82 0.60

Note: Data in parentheses indicate standard deviation. AUC area under the curve, CCC clear cell carcinoma, DK/ diffusion kurtosis imaging,
DWI diffusion-weighted imaging, EC endometrioid carcinoma,HGSC high-grade serous carcinoma, /VIM intravoxel incoherent motion, MC,

mucinous carcinoma. *p <0.05
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Fig.2 Area under the curve comparison of multi-b-value diffusion-weighted imaging—derived parameters for differentiating high-grade serous
carcinoma from other ovarian cancer subtypes

Table 3 Multi-b-value diffusion-weighted imaging—derived parameters for each histological subtype

Parameter HGSC (n=29) CCC(n=14) EC(n=11) MC (n=2) )4
DWI  ADC (10~ mm?%/s)
Mean 0.58 (0.12) 0.87 (0.14)  0.65(0.13)  0.65(0.24)  <0.001* for HGSC vs. CCC, 0.007 for EC vs. CCC
Median 0.58 (0.13) 0.88 (0.14)  0.67(0.13)  0.61 (0.22)  <0.001* for HGSC vs. CCC, 0.011 for EC vs. CCC
IVIM Di (107 mm?%/s)
Mean 0.37 (0.09) 047 (0.17)  0.36(0.10)  0.36 (0.05)  0.031* for HGSC vs. CCC
Median 0.37 (0.11) 0.47 (0.19)  0.38(0.10)  0.40 (0.11)  0.040* for HGSC vs. CCC
D* (1073 mm?%/s)
Mean 7.05 (4.12) 6.01 3.65) 5.06(2.84)  5.29 (2.54)
Median 5.67 (4.02) 7.80 (8.97)  4.68(2.78)  5.79 (2.72)
£ (%)
Mean 35.79 (11.48)  51.72(16.94) 44.68 (15.67) 40.27 (20.57) 0.002* for HGSC vs. CCC
Median 35.27 (16.70)  51.84 (16.25) 43.98 (15.28) 38.95 (22.35) 0.002* for HGSC vs. CCC
DKI K
Mean 1.06 (0.25) 0.78 (0.18)  0.89(0.19)  1.03(0.19)  <0.001* for HGSC vs. CCC, 0.045* for HGSC vs.
EC
Median 1.08 (0.23) 0.81 (0.17)  0.91(0.20)  1.02(020)  <0.001* for HGSC vs. CCC

Note: Data in parentheses indicate standard deviation. CCC clear cell carcinoma, DK/ diffusion kurtosis imaging, DWI diffusion-weighted imag-
ing, EC endometrioid carcinoma, HGSC high-grade serous carcinoma, /VIM intravoxel incoherent motion, MC mucinous carcinoma. *p <0.05

ICC values for various diffusion parameters were as fol- ICC (2,1) for D* was 0.66, ICC (2,1) for f was 0.70, and ICC
lows: ICC (2,1) for ADC was 0.92, ICC (2,1) for Di was 0.69, (2,1) for K was 0.91.
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Fig.3 A 67-year-old woman with high-grade serous carcinoma. A
T2-weighted imaging, B contrast-enhanced T1-weighted imaging, C
conventional diffusion weighted imaging, D apparent diffusion coef-
ficient map, E intravoxel incoherent motion and diffusion kurtosis
imaging analysis (top left: ROI, top right: Di, D*, f, K maps, bottom
right: intravoxel incoherent motion model plot, bottom left: kurtosis
model plot). A solid and cystic tumour infiltrating the myometrium is

located posterior to the uterus (arrows). Post-contrast imaging reveals
a central non-enhancing area, indicative of necrosis (B: arrowheads).
The solid tissue exhibits marked diffusion restriction (C, D arrows).
The mean diffusion-weighted, intravoxel incoherent motion, and dif-
fusion kurtosis imaging parameters measured by three radiologists
were as follows: ADC=0.50x 102 mm?s, Di=0.46x 107> mm?%s,
D*=5.77x 107> mm.%/s, f=27%, and k=1.17

carcinoma. A

Fig.4 A 72-year-old woman with clear cell
T2-weighted imaging, B contrast-enhanced T1-weighted imaging,
C conventional diffusion weighted imaging, D apparent diffusion
coefficient map, E intravoxel incoherent motion and diffusion kur-
tosis imaging analysis (top left: ROI, top right: Di, D*, f, K maps,
bottom right: intravoxel incoherent motion model plot, bottom left:
kurtosis model plot). A unilocular cyst is located just beneath the
anterior abdominal wall (arrows), containing multiple mural nod-

ules (A arrowhead) that exhibit low signal intensity on T2-weighted
imaging. Post-contrast imaging shows relatively strong enhance-
ment of the mural nodules (B arrowhead), which also correspond
to areas of marked diffusion restriction (D, E: arrowheads). The
mean diffusion-weighted, intravoxel incoherent motion, and diffu-
sion kurtosis imaging parameters measured by three radiologists
were as follows: ADC=0.69x 107> mm?%s, Di=0.63x 10> mm?s,
D*=5.29x 107> mm.%s, f=63%, and k=0.63
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Fig.5 A 72-year-old woman with endometrioid carcinoma. A
T2-weighted imaging, B contrast-enhanced T1-weighted imaging,
C conventional diffusion weighted imaging, D apparent diffusion
coefficient map, E intravoxel incoherent motion and diffusion kur-
tosis imaging analysis (top left: ROI, top right: Di, D*, f, K maps,
bottom right: intravoxel incoherent motion model plot, bottom left:
kurtosis model plot). A solid tumour is present in the left adnexa
(arrows), accompanied by a component showing markedly low sig-
nal intensity on T2-weighted imaging (A arrowhead), which is sus-
pected to be an endometriotic cyst. The findings suggest ovarian

Discussion

Overall, HGSC tended to have lower ADC, Di, and f values
and higher K values than other ovarian cancers. Significant
differences were observed in the ADC y;.,., ADC pedians
Means T Medians @0d K yegian» With the ADC ., showing the
highest AUC. In the comparison between the histological
subtypes, significant differences were observed in all param-
eters, except for D* between HGSC and CCC, and Ky,
was the only parameter that showed a significant difference
between HGSC and EC.

Multi-b-value DWI enables more detailed analysis of tis-
sue microstructure by allowing separation of multiple dif-
fusion-related parameters. ADC reflects both diffusion and
perfusion and is influenced by cellularity, tortuosity of the
extracellular/extravascular space, and cell membrane density,
based on differences in water proton mobility within tissues
[14]. The multi-point method offers more reliable and con-
sistent ADC measurements with less variability compared
to the two-point method [15]. Di represents the true diffu-
sion coefficient of water molecules in tissue after exclud-
ing microcirculation perfusion. This parameter reflects the
intrinsic mobility of water molecules and is influenced by
cell density, extracellular space curvature, cell membrane
integrity, and liquid viscosity. The Di value decreases when
tissues contain more cells, have reduced intercellular space,

@ Springer

carcinoma arising from an endometriotic cyst. The solid tissue dem-
onstrates homogeneous enhancement after contrast administration (B
arrow), with diffusion restriction that is heterogeneous (C, D arrows).
Strong diffusion restriction is observed along the posterior margin
of the solid tissue (asterisk). The mean diffusion-weighted, intra-
voxel incoherent motion, and diffusion kurtosis imaging parameters
measured by three radiologists were as follows: ADC=0.70x107
mm?%s, Di=0.56x 107> mm?s, D*=5.15x 10 mm.%s, f=36%, and
k=0.99

and have a higher nucleus-to-cytoplasm ratio. As a result,
malignant tumours consistently exhibit lower Di values than
benign tumours or normal tissues [16-21]. On the other
hand, D* is considered to be associated with blood flow in
the microvasculature [22-24]. It has been reported to be pos-
itively proportional to the average blood flow velocity and
capillary segment length, and higher D* values are thought
to reflect increased microcirculatory perfusion within the
tissue [25, 26]. Similar to D*, f is regarded as a perfusion-
related parameter. The f represents the fraction of water mol-
ecules moving with microcirculation in capillaries and small
vessels. It is believed to reflect the level of blood perfusion
related to microvessel density and vascular lumen size. A
higher f is generally interpreted as indicating more active
blood flow, while a lower f suggests reduced or restricted
microcirculation [25, 27]. The DKI model incorporates K,
a parameter that quantifies deviations from the Gaussian
behaviour caused by tissue heterogeneity, which is gener-
ally proportional to the heterogeneity and complexity of the
tissue microstructure [11].

Only a few studies have investigated the applications of
IVIM and DKI in ovarian cancer. Song et al. used IVIM
to differentiate borderline from malignant tumours and
found that ADC and Di were higher, while f was lower in
borderline tumours. These parameters also correlated with
Ki-67 expression and microvessel density [28]. Wang et al.
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compared type 1 and type 2 ovarian cancers, showing sig-
nificantly lower ADC, Di, and f values in type 2 cancers,
though no difference was observed in D* [29]. Le et al.
reported that CCC and EC tended to show higher ADC and
Dk values and lower K values compared to HGSC, but did
not perform formal statistical comparisons or evaluate [IVIM
parameters [30]. The trend observed in these studies, where
HGSC exhibited lower ADC, Di, and f values but higher
K values than other cancers, is consistent with the current
study’s findings. The numerical differences may result from
variations in models, differences in ROI selection, and, addi-
tionally, the larger number of cases included in our study
compared to previous reports. Unlike earlier methods, we
identified areas with low ADC values and evaluated them
using small ROIs, as recommended for uterine sarcoma [13].
Ovarian cancer is a heterogeneous tumour; however, its path-
ological diagnosis is based on the most malignant region.
Therefore, focusing on areas that appear most malignant is
logical and straightforward. This approach is practical and
well-suited for clinical applications.

ADC reflects both diffusion and perfusion and is sensi-
tive to tumour heterogeneity, which may explain its superior
diagnostic performance in distinguishing between HGSC and
other cancers, including HGSC versus CCC and CCC versus
EC. In contrast, Di reflects only pure diffusion and excludes
perfusion-related variability, making it less affected by het-
erogeneity within the ROI. This stabilizes the Di values but
likely led to the absence of significant differences between
HGSC and other cancers. However, in subtype comparisons,
a significant difference in Di values were observed between
HGSC and CCC, and another possible explanation is that this
difference may have been offset when other cancer subtypes
were included in the CCC group. Among the IVIM param-
eters, the perfusion-related metrics (D* and f) showed lower
reproducibility [16, 29, 31], consistent with prior studies; D*
exhibited the lowest ICC in our data. Although Song et al.
found that malignant tumours had higher f values than border-
line tumours [28], our study, consistent with previous findings,
demonstrated lower f values in HGSC, a more aggressive sub-
type. This may be attributed to necrosis and hypoxia leading
to the destruction of microvascular structures. K values were
elevated in HGSC, even within the most malignant regions,
suggesting marked intratumoural heterogeneity. A signifi-
cant difference in K i, Ut n0t K 3.0 between HGSC and
other cancers implies high variability between ROIs, possi-
bly reflecting microscale structural complexity as reported by
Maiuro et al. [32]. HGSC is characterized by high cellularity,
nuclear atypia, and complex papillary structures, whereas CCC
consists of relatively uniform clear cells with less architectural
complexity [33], and EC typically shows glandular differentia-
tion and lower cellular density [34]. These histological differ-
ences—and additionally, differences in cellular proliferation
as reflected by Ki-67 expression, which is generally higher

in HGSC than in CCC and EC [35, 36], —may underlie the
elevated K values observed in HGSC. Furthermore, Deen et al.
reported that K is a potential biomarker for predicting response
to neoadjuvant chemotherapy in HGSC, with higher K values
linked to better outcomes [37].

This study had several limitations. First, it was retrospec-
tive and limited to cases captured using a single MRI system,
which may have introduced selection bias. Second, the num-
ber of MC cases was small, and rare epithelial malignancies
such as malignant Brenner tumours were not included. Third,
pathological validation, such as microvessel density analysis,
was not performed. Forth, due to the limited number of low
b-values, the derived D* and f values may not fully reflect
true perfusion but instead reflect fast and slow diffusive com-
partments. Therefore, the results should be interpreted as a
bi-exponential approximation rather than strict IVIM perfu-
sion parameters. Fifth, the ROI measurement method differs
from previous reports; however, our measurement method is
straightforward and clinically practical. Finally, future studies
with larger and more diverse cohorts are needed to validate the
generalizability of our findings.

In conclusion, HGSC was characterised by lower ADC
and f values and higher K values than other ovarian cancer
types. Among all parameters, ADC derived from multi—b-
value DWI demonstrated the highest diagnostic performance
in distinguishing HGSC from other ovarian cancers, sur-
passing the other multi—b-value DWI derived parameters. In
comparisons with individual histological subtypes, HGSC
exhibited significantly lower ADC, Di, and f values and
higher K values than CCC, and only K ,,.,, was useful in
distinguishing HGSC from EC.
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